August  2020, 19(8): 4213-4225. doi: 10.3934/cpaa.2020189

Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression

1. 

Department of Mathematics and Computer Science, University of Oradea, Oradea, Romania

2. 

Department of Mathematics and Computer Science, University of Perugia, Perugia, Italy

* Corresponding author

Received  October 2019 Revised  March 2020 Published  May 2020

In a recent paper, for univariate max-product sampling operators based on general kernels with bounded generalized absolute moments, we have obtained several $ L^{p}_{\mu} $ convergence properties on bounded intervals or on the whole real axis. In this paper, firstly we obtain quantitative estimates with respect to a $ K $-functional, for the multivariate Kantorovich variant of these max-product sampling operators with the integrals written in terms of Borel probability measures. Applications of these approximation results to learning theory are obtained.

Citation: Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189
References:
[1]

L. AngeloniD. Costarelli and G. Vinti, A characterization of the convergence in variation for the generalized sampling series, Ann. Acad. Sci. Fenn. Math., 43 (2018), 755-767.  doi: 10.5186/aasfm.2018.4343.  Google Scholar

[2]

F. AsdrubaliG. BaldinelliF. BianchiD. CostarelliA. RotiliM. Seracini and G. Vinti, Detection of thermal bridges from thermographic images by means of image processing approximation algorithms, Appl. Math. Comput., 317 (2018), 160-171.  doi: 10.1016/j.amc.2017.08.058.  Google Scholar

[3]

C. BardaroP. L. ButzerR. L. Stens and G. Vinti, Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampl. Theory Signal Image Process., 6 (2007), 19-52.   Google Scholar

[4]

C. Bardaro and I. Mantellini, Generalized sampling approximation of bivariate signals: rate of pointwise convergence, Numer. Funct. Anal. Optim., 31 (2010), 131-154.  doi: 10.1080/01630561003644702.  Google Scholar

[5]

B. Bede, L. Coroianu and S. G. Gal, Approximation by Max-Product Type Operators, Springer, New York, 2016. doi: 10.1007/978-3-319-34189-7.  Google Scholar

[6]

B. Bede, L. Coroianu and S. G. Gal, Approximation and shape preserving properties of the Bernstein operator of max-product kind, Int. J. Math. Math. Sci., 2009 (2009), Art. 590589, 26 pp. doi: 10.1155/2009/590589.  Google Scholar

[7]

P. L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Expos., 3 (1983), 185-212.   Google Scholar

[8]

P. L. ButzerH. G. Feichtinger and K. Grochenig, Error analysis in regular and irregular sampling theory, Appl. Anal., 50 (1993), 167-189.  doi: 10.1080/00036819308840192.  Google Scholar

[9] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximations, I, Academic Press, New York-London, 1971.   Google Scholar
[10]

P. L. ButzerS. Riesz and R. L. Stens, Approximation of continuous and discontinuous functions by generalized sampling series, J. Approx. Theory, 50 (1987), 25-39.  doi: 10.1016/0021-9045(87)90063-3.  Google Scholar

[11]

L. CoroianuD. CostarelliS. G. Gal and G. Vinti, The max-product generalized sampling operators: convergence and quantitative estimates, Appl. Math. Comput., 355 (2019), 173-183.  doi: 10.1016/j.amc.2019.02.076.  Google Scholar

[12]

L. Coroianu, D. Costarelli, S. G. Gal and G. Vinti, Approximation by max-product sampling Kantorovich operators with generalized kernels, Anal. Appl., 2019, in press. doi: 10.1142/S0219530519500155.  Google Scholar

[13]

L. Coroianu and S. G. Gal, Approximation by nonlinear generalized sampling operators of max-product kind, Sampl. Theory Signal Image Process., 9 (2010), 59-75.   Google Scholar

[14]

L. Coroianu and S. G. Gal, Approximation by max-product sampling operators based on sinc-type kernels, Sampl. Theory Signal Image Process., 10 (2011), 211-230.   Google Scholar

[15]

L. Coroianu and S. G. Gal, Classes of functions with improved estimates in approximation by the max-product Bernstein operator, Anal. Appl., 9 (2011), 249-274.  doi: 10.1142/S0219530511001856.  Google Scholar

[16]

L. Coroianu and S. G. Gal, Approximation by truncated max-product operators of Kantorovich-type based on generalized $(\varphi, \psi)$-kernels, Math. Meth. Appl. Sci., 41 (2018), 7971-7984.  doi: 10.1002/mma.5262.  Google Scholar

[17]

L. Coroianu and S. G. Gal, $L^{p}$-approximation by truncated max-product sampling operators of Kantorovich-type based on Fejér kernel, J. Integr. Equ. Appl., 29 (2017), 349-364.  doi: 10.1216/JIE-2017-29-2-349.  Google Scholar

[18]

L. Coroianu and S. G. Gal, Saturation results for the truncated max-product sampling operators based on sinc and Fejér-type kernels, Sampl. Theory Signal Image Process., 11 (2012), 113-132.   Google Scholar

[19]

D. CostarelliA. M. Minotti and G. Vinti, Approximation of discontinuous signals by sampling Kantorovich series, J. Math. Anal. Appl., 450 (2017), 1083-1103.  doi: 10.1016/j.jmaa.2017.01.066.  Google Scholar

[20]

D. Costarelli and A. R. Sambucini, Approximation results in Orlicz spaces for sequences of Kantorovich max-product neural network operators, Results Math., 73 (2018), Art. 15. doi: 10.1007/s00025-018-0799-4.  Google Scholar

[21]

D. Costarelli, A. R. Sambucini and G. Vinti, Convergence in Orlicz spaces by means of the multivariate max-product neural network operators of the Kantorovich type and applications, Neural Comput. Appl., 31 (2019), 5069-5078. doi: 10.1007/s00521-018-03998-6.  Google Scholar

[22]

D. Costarelli and G. Vinti, Order of approximation for sampling Kantorovich type operators, J. Integr. Equ. Appl., 26 (2014), 345-368.  doi: 10.1216/JIE-2014-26-3-345.  Google Scholar

[23]

D. Costarelli and G. Vinti, Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces, J. Integr. Equ. Appl., 26 (2014), 455-481.  doi: 10.1216/JIE-2014-26-4-455.  Google Scholar

[24]

D. Costarelli and G. Vinti, Approximation by max-product neural network operators of Kantorovich type, Results Math., 69 (2016), 505-519.  doi: 10.1007/s00025-016-0546-7.  Google Scholar

[25]

D. Costarelli and G. Vinti, Max-product neural network and quasi-interpolation operators activated by sigmoidal functions, J. Approx. Theory, 209 (2016), 1-22.  doi: 10.1016/j.jat.2016.05.001.  Google Scholar

[26]

D. Costarelli and G. Vinti, Pointwise and uniform approximation by multivariate neural network operators of the max-product type, Neural Netw., 81 (2016), 81-90.   Google Scholar

[27]

D. Costarelli and G. Vinti, Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting, Math. Slovaca, 67 (2017), 1469-1480.  doi: 10.1515/ms-2017-0063.  Google Scholar

[28]

D. Costarelli and G. Vinti, Convergence for a family of neural network operators in Orlicz spaces, Math. Nachr., 290 (2017), 226-235.  doi: 10.1002/mana.201600006.  Google Scholar

[29]

D. Costarelli and G. Vinti, Estimates for the neural network operators of the max-product type with continuous and $p$-integrable functions, Results Math., 73 (2018), Art. 12. doi: 10.1007/s00025-018-0790-0.  Google Scholar

[30]

D. Costarelli and G. Vinti, An inverse result of approximation by sampling Kantorovich series, Proc. Edinb. Math. Soc., 62 (2019), 265-280.  doi: 10.1017/s0013091518000342.  Google Scholar

[31]

S. Y. Güngör and N. Ispir, Approximation by Bernstein-Chlodowsky operators of max-product kind, Math. Commun., 23 (2018), 205-225.   Google Scholar

[32]

A. Holhos, Weighted Approximation of functions by Meyer-König and Zeller operators of max-product type, Numer. Funct. Anal. Optim., 39 (2018), 689-703.  doi: 10.1080/01630563.2017.1413386.  Google Scholar

[33]

A. Holhos, Weighted approximation of functions by Favard operators of max-product type, Period. Math. Hungar., 77 (2018), 340-346.  doi: 10.1007/s10998-018-0249-9.  Google Scholar

[34]

B. Z. Li, Approximation by multivariate Bernstein-Durrmeyer operators and learning rates of least-squares regularized regression with multivariate polynomial kernels, J. Approx. Theory, 173 (2013), 33-55.  doi: 10.1016/j.jat.2013.04.007.  Google Scholar

[35]

O. Orlova and G. Tamberg, On approximation properties of generalized Kantorovich-type sampling operators, J. Approx. Theory, 201 (2016), 73-86.  doi: 10.1016/j.jat.2015.10.001.  Google Scholar

[36]

R. J. Ravier and R. S. Stichartz, Sampling theory with average values on the Sierpinski gasket, Constr. Approx., 44 (2016), 159-194.  doi: 10.1007/s00365-016-9341-7.  Google Scholar

[37]

R. L. Stens, Error estimates for sampling sums based on convolution integrals, Inform. Control, 45 (1980), 37-47.  doi: 10.1016/S0019-9958(80)90857-8.  Google Scholar

[38]

D. X. Zhou, Deep distributed convolutional neural networks: universality, Anal. Appl., 16 (2018), 895-919.  doi: 10.1142/S0219530518500124.  Google Scholar

[39]

D. X. Zhou, Universality of deep convolutional neural networks, Appl. Comput. Harmon. Anal., 48 (2020), 787-794.  doi: 10.1016/j.acha.2019.06.004.  Google Scholar

[40]

D. X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math., 25 (2006), 323-344.  doi: 10.1007/s10444-004-7206-2.  Google Scholar

show all references

References:
[1]

L. AngeloniD. Costarelli and G. Vinti, A characterization of the convergence in variation for the generalized sampling series, Ann. Acad. Sci. Fenn. Math., 43 (2018), 755-767.  doi: 10.5186/aasfm.2018.4343.  Google Scholar

[2]

F. AsdrubaliG. BaldinelliF. BianchiD. CostarelliA. RotiliM. Seracini and G. Vinti, Detection of thermal bridges from thermographic images by means of image processing approximation algorithms, Appl. Math. Comput., 317 (2018), 160-171.  doi: 10.1016/j.amc.2017.08.058.  Google Scholar

[3]

C. BardaroP. L. ButzerR. L. Stens and G. Vinti, Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampl. Theory Signal Image Process., 6 (2007), 19-52.   Google Scholar

[4]

C. Bardaro and I. Mantellini, Generalized sampling approximation of bivariate signals: rate of pointwise convergence, Numer. Funct. Anal. Optim., 31 (2010), 131-154.  doi: 10.1080/01630561003644702.  Google Scholar

[5]

B. Bede, L. Coroianu and S. G. Gal, Approximation by Max-Product Type Operators, Springer, New York, 2016. doi: 10.1007/978-3-319-34189-7.  Google Scholar

[6]

B. Bede, L. Coroianu and S. G. Gal, Approximation and shape preserving properties of the Bernstein operator of max-product kind, Int. J. Math. Math. Sci., 2009 (2009), Art. 590589, 26 pp. doi: 10.1155/2009/590589.  Google Scholar

[7]

P. L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Expos., 3 (1983), 185-212.   Google Scholar

[8]

P. L. ButzerH. G. Feichtinger and K. Grochenig, Error analysis in regular and irregular sampling theory, Appl. Anal., 50 (1993), 167-189.  doi: 10.1080/00036819308840192.  Google Scholar

[9] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximations, I, Academic Press, New York-London, 1971.   Google Scholar
[10]

P. L. ButzerS. Riesz and R. L. Stens, Approximation of continuous and discontinuous functions by generalized sampling series, J. Approx. Theory, 50 (1987), 25-39.  doi: 10.1016/0021-9045(87)90063-3.  Google Scholar

[11]

L. CoroianuD. CostarelliS. G. Gal and G. Vinti, The max-product generalized sampling operators: convergence and quantitative estimates, Appl. Math. Comput., 355 (2019), 173-183.  doi: 10.1016/j.amc.2019.02.076.  Google Scholar

[12]

L. Coroianu, D. Costarelli, S. G. Gal and G. Vinti, Approximation by max-product sampling Kantorovich operators with generalized kernels, Anal. Appl., 2019, in press. doi: 10.1142/S0219530519500155.  Google Scholar

[13]

L. Coroianu and S. G. Gal, Approximation by nonlinear generalized sampling operators of max-product kind, Sampl. Theory Signal Image Process., 9 (2010), 59-75.   Google Scholar

[14]

L. Coroianu and S. G. Gal, Approximation by max-product sampling operators based on sinc-type kernels, Sampl. Theory Signal Image Process., 10 (2011), 211-230.   Google Scholar

[15]

L. Coroianu and S. G. Gal, Classes of functions with improved estimates in approximation by the max-product Bernstein operator, Anal. Appl., 9 (2011), 249-274.  doi: 10.1142/S0219530511001856.  Google Scholar

[16]

L. Coroianu and S. G. Gal, Approximation by truncated max-product operators of Kantorovich-type based on generalized $(\varphi, \psi)$-kernels, Math. Meth. Appl. Sci., 41 (2018), 7971-7984.  doi: 10.1002/mma.5262.  Google Scholar

[17]

L. Coroianu and S. G. Gal, $L^{p}$-approximation by truncated max-product sampling operators of Kantorovich-type based on Fejér kernel, J. Integr. Equ. Appl., 29 (2017), 349-364.  doi: 10.1216/JIE-2017-29-2-349.  Google Scholar

[18]

L. Coroianu and S. G. Gal, Saturation results for the truncated max-product sampling operators based on sinc and Fejér-type kernels, Sampl. Theory Signal Image Process., 11 (2012), 113-132.   Google Scholar

[19]

D. CostarelliA. M. Minotti and G. Vinti, Approximation of discontinuous signals by sampling Kantorovich series, J. Math. Anal. Appl., 450 (2017), 1083-1103.  doi: 10.1016/j.jmaa.2017.01.066.  Google Scholar

[20]

D. Costarelli and A. R. Sambucini, Approximation results in Orlicz spaces for sequences of Kantorovich max-product neural network operators, Results Math., 73 (2018), Art. 15. doi: 10.1007/s00025-018-0799-4.  Google Scholar

[21]

D. Costarelli, A. R. Sambucini and G. Vinti, Convergence in Orlicz spaces by means of the multivariate max-product neural network operators of the Kantorovich type and applications, Neural Comput. Appl., 31 (2019), 5069-5078. doi: 10.1007/s00521-018-03998-6.  Google Scholar

[22]

D. Costarelli and G. Vinti, Order of approximation for sampling Kantorovich type operators, J. Integr. Equ. Appl., 26 (2014), 345-368.  doi: 10.1216/JIE-2014-26-3-345.  Google Scholar

[23]

D. Costarelli and G. Vinti, Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces, J. Integr. Equ. Appl., 26 (2014), 455-481.  doi: 10.1216/JIE-2014-26-4-455.  Google Scholar

[24]

D. Costarelli and G. Vinti, Approximation by max-product neural network operators of Kantorovich type, Results Math., 69 (2016), 505-519.  doi: 10.1007/s00025-016-0546-7.  Google Scholar

[25]

D. Costarelli and G. Vinti, Max-product neural network and quasi-interpolation operators activated by sigmoidal functions, J. Approx. Theory, 209 (2016), 1-22.  doi: 10.1016/j.jat.2016.05.001.  Google Scholar

[26]

D. Costarelli and G. Vinti, Pointwise and uniform approximation by multivariate neural network operators of the max-product type, Neural Netw., 81 (2016), 81-90.   Google Scholar

[27]

D. Costarelli and G. Vinti, Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting, Math. Slovaca, 67 (2017), 1469-1480.  doi: 10.1515/ms-2017-0063.  Google Scholar

[28]

D. Costarelli and G. Vinti, Convergence for a family of neural network operators in Orlicz spaces, Math. Nachr., 290 (2017), 226-235.  doi: 10.1002/mana.201600006.  Google Scholar

[29]

D. Costarelli and G. Vinti, Estimates for the neural network operators of the max-product type with continuous and $p$-integrable functions, Results Math., 73 (2018), Art. 12. doi: 10.1007/s00025-018-0790-0.  Google Scholar

[30]

D. Costarelli and G. Vinti, An inverse result of approximation by sampling Kantorovich series, Proc. Edinb. Math. Soc., 62 (2019), 265-280.  doi: 10.1017/s0013091518000342.  Google Scholar

[31]

S. Y. Güngör and N. Ispir, Approximation by Bernstein-Chlodowsky operators of max-product kind, Math. Commun., 23 (2018), 205-225.   Google Scholar

[32]

A. Holhos, Weighted Approximation of functions by Meyer-König and Zeller operators of max-product type, Numer. Funct. Anal. Optim., 39 (2018), 689-703.  doi: 10.1080/01630563.2017.1413386.  Google Scholar

[33]

A. Holhos, Weighted approximation of functions by Favard operators of max-product type, Period. Math. Hungar., 77 (2018), 340-346.  doi: 10.1007/s10998-018-0249-9.  Google Scholar

[34]

B. Z. Li, Approximation by multivariate Bernstein-Durrmeyer operators and learning rates of least-squares regularized regression with multivariate polynomial kernels, J. Approx. Theory, 173 (2013), 33-55.  doi: 10.1016/j.jat.2013.04.007.  Google Scholar

[35]

O. Orlova and G. Tamberg, On approximation properties of generalized Kantorovich-type sampling operators, J. Approx. Theory, 201 (2016), 73-86.  doi: 10.1016/j.jat.2015.10.001.  Google Scholar

[36]

R. J. Ravier and R. S. Stichartz, Sampling theory with average values on the Sierpinski gasket, Constr. Approx., 44 (2016), 159-194.  doi: 10.1007/s00365-016-9341-7.  Google Scholar

[37]

R. L. Stens, Error estimates for sampling sums based on convolution integrals, Inform. Control, 45 (1980), 37-47.  doi: 10.1016/S0019-9958(80)90857-8.  Google Scholar

[38]

D. X. Zhou, Deep distributed convolutional neural networks: universality, Anal. Appl., 16 (2018), 895-919.  doi: 10.1142/S0219530518500124.  Google Scholar

[39]

D. X. Zhou, Universality of deep convolutional neural networks, Appl. Comput. Harmon. Anal., 48 (2020), 787-794.  doi: 10.1016/j.acha.2019.06.004.  Google Scholar

[40]

D. X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math., 25 (2006), 323-344.  doi: 10.1007/s10444-004-7206-2.  Google Scholar

[1]

Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $ k $-error linear complexity for $ p^n $-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018

[2]

Ying Lin, Rongrong Lin, Qi Ye. Sparse regularized learning in the reproducing kernel banach spaces with the $ \ell^1 $ norm. Mathematical Foundations of Computing, 2020, 3 (3) : 205-218. doi: 10.3934/mfc.2020020

[3]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[4]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6785-6799. doi: 10.3934/dcds.2019231

[5]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[6]

Li Wang, Qiang Xu, Shulin Zhou. $ L^p $ Neumann problems in homogenization of general elliptic operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 5019-5045. doi: 10.3934/dcds.2020210

[7]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[8]

Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems & Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037

[9]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020363

[10]

Burak Ordin, Adil Bagirov, Ehsan Mohebi. An incremental nonsmooth optimization algorithm for clustering using $ L_1 $ and $ L_\infty $ norms. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2757-2779. doi: 10.3934/jimo.2019079

[11]

Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2425-2437. doi: 10.3934/jimo.2019061

[12]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[13]

Mihai Mihăilescu, Julio D. Rossi. Monotonicity with respect to $ p $ of the First Nontrivial Eigenvalue of the $ p $-Laplacian with Homogeneous Neumann Boundary Conditions. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4363-4371. doi: 10.3934/cpaa.2020198

[14]

Yamin Wang. On nonexistence of extremals for the Trudinger-Moser functionals involving $ L^p $ norms. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4257-4268. doi: 10.3934/cpaa.2020191

[15]

Junjie Zhang, Shenzhou Zheng, Haiyan Yu. $ L^{p(\cdot)} $-regularity of Hessian for nondivergence parabolic and elliptic equations with measurable coefficients. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2777-2796. doi: 10.3934/cpaa.2020121

[16]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[17]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[18]

Jinrui Huang, Wenjun Wang, Huanyao Wen. On $ L^p $ estimates for a simplified Ericksen-Leslie system. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1485-1507. doi: 10.3934/cpaa.2020075

[19]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[20]

Mingxia Li, Dongying Hua, Hairong Lian. On $ P_1 $ nonconforming finite element aproximation for the Signorini problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2020103

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (216)
  • HTML views (76)
  • Cited by (0)

[Back to Top]