September  2020, 19(9): 4699-4726. doi: 10.3934/cpaa.2020192

Hardy inequalities for the fractional powers of the Grushin operator

1. 

School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China

2. 

Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso, Chile

3. 

Department of Mathematics, Jianghan University, Wuhan, Hubei, 430056, China

* Corresponding author

Received  August 2019 Revised  March 2020 Published  June 2020

Fund Project: M. Song is supported by the China Postdoctoral Science Foundation (Grant No. 2017M623230), the National Natural Science Foundation of China (Grant No. 11701452), the Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-112) and the Fundamental Research Funds for the Central Universities (Grant No. 3102018zy041). J. Tan is partially supported by Chile Government grant FONDECYT grant 1160519 and by MINECO grants MTM2014-52402-C3-1-P and MTM2017-84214-C2-1-P (Spain Government Grants)

We establish uncertainty principles and Hardy inequalities for the fractional Grushin operator, which are reduced to those inequalities for the fractional generalized sublaplacian. The key ingredients to obtain them are an explicit integral representation and a ground state representation for the fractional powers of generalized sublaplacian.

Citation: Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192
References:
[1]

R. Balhara, Hardy's inequality for the fractional powers of the Grushin operator, Proc. Indian Acad. Sci. (Math. Sci.), 129 (2019), 33. doi: 10.1007/s12044-019-0471-2.  Google Scholar

[2]

W. Beckner, Pitt's inequality and the fractional Laplacian: sharp error estimates, Forum Math., 24 (2012), 177-209.  doi: 10.1515/form.2011.056.  Google Scholar

[3]

O. CiaurriL. Roncal and S. Thangavelu, Hardy-type inequalities for fractional powers of the Dunkl-Hermite operator, Proc. Edinb. Math. Soc., 61 (2018), 513-544.  doi: 10.1017/s0013091517000311.  Google Scholar

[4]

M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of simple Lie group of real rank one, Invent. Math., 96 (1989), 507-549.  doi: 10.1007/BF01393695.  Google Scholar

[5]

G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, Vol. 28, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1982.  Google Scholar

[6]

R. L. FrankE. H. Lieb and R. Seiringer, Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950.  doi: 10.1090/S0894-0347-07-00582-6.  Google Scholar

[7]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Commun. Math. Phys., 53 (1977), 285-294.   Google Scholar

[8]

J. Huang, A heat kernel version of Cowling-Price theorem for the Laguerre hypergroup, Proc. Indian Acad. Sci., 120 (2010), 73-81.  doi: 10.1007/s12044-010-0004-5.  Google Scholar

[9]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th edition, Elsevier Academic Press, Amsterdam, 2007.  Google Scholar

[10]

L. Roncal and S. Thangavelu, Hardy's inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math., 302 (2016), 106-158.  doi: 10.1016/j.aim.2016.07.010.  Google Scholar

[11]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Vol. 32, Princeton University Press, 2016.  Google Scholar

[12]

K. Stempak, An algebra associated with the generalized sublaplacian, Studia Math., 88 (1988), 245-256.  doi: 10.4064/sm-88-3-245-256.  Google Scholar

[13]

K. Stempak, Mean summability methods for Laguerre series, Trans. Amer. Math. Soc., 322 (1990), 671-690.  doi: 10.2307/2001720.  Google Scholar

[14]

J. Tan and X. Yu, Liouville type theorems for nonlinear elliptic equations on extended Grushin manifolds, J. Diff. Equa., 269 (2020), 523-541.   Google Scholar

[15]

S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes, Vol. 42, Princeton University Press, Princeton, NJ, 1993.  Google Scholar

[16]

S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, Vol. 159, Birkhäuser, Boston, MA, 1998. doi: 10.1007/978-1-4612-1772-5.  Google Scholar

[17]

S. Thangavelu, An Introduction to the Uncertainty Principle. Hardy's Theorem on Lie Groups, Progress in Mathematics, Vol. 217, Birkhäuser, Boston, MA, 2004. doi: 10.1007/978-0-8176-8164-7.  Google Scholar

[18]

F. G. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of Gamma functions, Pacific J. Math., 1 (1951), 133-142.   Google Scholar

[19]

D. Yafaev, Sharp constants in the Hardy–Rellich inequalities, J. Funct. Anal., 168 (1999), 121-144.  doi: 10.1006/jfan.1999.3462.  Google Scholar

show all references

References:
[1]

R. Balhara, Hardy's inequality for the fractional powers of the Grushin operator, Proc. Indian Acad. Sci. (Math. Sci.), 129 (2019), 33. doi: 10.1007/s12044-019-0471-2.  Google Scholar

[2]

W. Beckner, Pitt's inequality and the fractional Laplacian: sharp error estimates, Forum Math., 24 (2012), 177-209.  doi: 10.1515/form.2011.056.  Google Scholar

[3]

O. CiaurriL. Roncal and S. Thangavelu, Hardy-type inequalities for fractional powers of the Dunkl-Hermite operator, Proc. Edinb. Math. Soc., 61 (2018), 513-544.  doi: 10.1017/s0013091517000311.  Google Scholar

[4]

M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of simple Lie group of real rank one, Invent. Math., 96 (1989), 507-549.  doi: 10.1007/BF01393695.  Google Scholar

[5]

G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, Vol. 28, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1982.  Google Scholar

[6]

R. L. FrankE. H. Lieb and R. Seiringer, Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950.  doi: 10.1090/S0894-0347-07-00582-6.  Google Scholar

[7]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Commun. Math. Phys., 53 (1977), 285-294.   Google Scholar

[8]

J. Huang, A heat kernel version of Cowling-Price theorem for the Laguerre hypergroup, Proc. Indian Acad. Sci., 120 (2010), 73-81.  doi: 10.1007/s12044-010-0004-5.  Google Scholar

[9]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th edition, Elsevier Academic Press, Amsterdam, 2007.  Google Scholar

[10]

L. Roncal and S. Thangavelu, Hardy's inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math., 302 (2016), 106-158.  doi: 10.1016/j.aim.2016.07.010.  Google Scholar

[11]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Vol. 32, Princeton University Press, 2016.  Google Scholar

[12]

K. Stempak, An algebra associated with the generalized sublaplacian, Studia Math., 88 (1988), 245-256.  doi: 10.4064/sm-88-3-245-256.  Google Scholar

[13]

K. Stempak, Mean summability methods for Laguerre series, Trans. Amer. Math. Soc., 322 (1990), 671-690.  doi: 10.2307/2001720.  Google Scholar

[14]

J. Tan and X. Yu, Liouville type theorems for nonlinear elliptic equations on extended Grushin manifolds, J. Diff. Equa., 269 (2020), 523-541.   Google Scholar

[15]

S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes, Vol. 42, Princeton University Press, Princeton, NJ, 1993.  Google Scholar

[16]

S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, Vol. 159, Birkhäuser, Boston, MA, 1998. doi: 10.1007/978-1-4612-1772-5.  Google Scholar

[17]

S. Thangavelu, An Introduction to the Uncertainty Principle. Hardy's Theorem on Lie Groups, Progress in Mathematics, Vol. 217, Birkhäuser, Boston, MA, 2004. doi: 10.1007/978-0-8176-8164-7.  Google Scholar

[18]

F. G. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of Gamma functions, Pacific J. Math., 1 (1951), 133-142.   Google Scholar

[19]

D. Yafaev, Sharp constants in the Hardy–Rellich inequalities, J. Funct. Anal., 168 (1999), 121-144.  doi: 10.1006/jfan.1999.3462.  Google Scholar

[1]

Pradeep Boggarapu, Luz Roncal, Sundaram Thangavelu. On extension problem, trace Hardy and Hardy's inequalities for some fractional Laplacians. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2575-2605. doi: 10.3934/cpaa.2019116

[2]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[3]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[4]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[5]

Lorenzo Brasco, Eleonora Cinti. On fractional Hardy inequalities in convex sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4019-4040. doi: 10.3934/dcds.2018175

[6]

Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437

[7]

James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137

[8]

Takayoshi Ogawa, Kento Seraku. Logarithmic Sobolev and Shannon's inequalities and an application to the uncertainty principle. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1651-1669. doi: 10.3934/cpaa.2018079

[9]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[10]

Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089

[11]

Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373

[12]

Boumediene Abdellaoui, Ahmed Attar, Abdelrazek Dieb, Ireneo Peral. Attainability of the fractional hardy constant with nonlocal mixed boundary conditions: Applications. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 5963-5991. doi: 10.3934/dcds.2018131

[13]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[14]

Daniele Cassani, Bernhard Ruf, Cristina Tarsi. On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 245-250. doi: 10.3934/dcdss.2019017

[15]

Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197

[16]

Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975

[17]

Tatiana Odzijewicz. Generalized fractional isoperimetric problem of several variables. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2617-2629. doi: 10.3934/dcdsb.2014.19.2617

[18]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 695-708. doi: 10.3934/dcdss.2020038

[19]

Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058

[20]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (43)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]