\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of infinitely many solutions for semilinear problems on exterior domains

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we prove the existence of infinitely many radial solutions of $ \Delta u + K(r)f(u) = 0 $ on the exterior of the ball of radius $ R>0 $, $ B_{R} $, centered at the origin in $ {\mathbb R}^{N} $ with $ u = 0 $ on $ \partial B_{R} $ and $ \lim_{r \to \infty} u(r) = 0 $ where $ N>2 $, $ f $ is odd with $ f<0 $ on $ (0, \beta) $, $ f>0 $ on $ (\beta, \infty), $ $ f $ superlinear for large $ u $ and $ 0< K(r) \leq \frac{K_{1}}{r^{\alpha}} $ with $ 2<\alpha <2(N-1) $ for large $ r $.

    Mathematics Subject Classification: Primary: 34B40; Secondary: 35B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Berestycki and P. L. Lions, Non-linear scalar field equations Ⅰ, Arch. Ration. Mech. Anal., 82 (1983), 313-347.  doi: 10.1007/BF00250555.
    [2] H. Berestycki and P.L. Lions, Non-linear scalar field equations Ⅱ, Arch. Rational Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.
    [3] M. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.
    [4] G. Birkhoff and G. C. Rota, Ordinary Differential Equations, Ginn and Company, 1962.
    [5] A. CastroL. Sankar and R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains, J. Math. Anal. Appl., 394 (2012), 432-437.  doi: 10.1016/j.jmaa.2012.04.005.
    [6] M. Chhetri, L. Sankar and R. Shivaji, Positive solutions for a class of superlinear semipositone systems on exterior domains, Bound. Value Probl., (2014), 198–207. doi: 10.1186/s13661-014-0198-z.
    [7] J. Iaia, Existence and nonexistence for semilinear equations on exterior domains, J. Partial Differ. Equ., 30 (2017), 1-17. 
    [8] J. Iaia, Existence and nonexistence of solutions for sublinear equations on exterior domains, Electron. J. Differ. Equ., 181 (2018), 1-14. 
    [9] J. Iaia, Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, J. Math. Anal. Appl., 446 (2017), 591-604.  doi: 10.1016/j.jmaa.2016.08.063.
    [10] C. K. R. T. Jones and T. Kupper, On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., 17 (1986), 803-835.  doi: 10.1137/0517059.
    [11] J. Joshi, Existence and nonexistence of solutions of sublinear problems with prescribed number of zeros on exterior domains, Electron. J. Differ. Equ., 133 (2017), 1-10. 
    [12] E. K. LeeR. Shivaji and B. Son, Positive radial solutions to classes of singular problems on the exterior of a ball, J. Math. Anal. Appl., 434 (2016), 1597-1611.  doi: 10.1016/j.jmaa.2015.09.072.
    [13] E. LeeL. Sankar and R. Shivaji, Positive solutions for infinite semipositone problems on exterior domains, Differ. Integral Equ., 24 (2011), 861-875. 
    [14] K. McLeodW. C. Troy and F. B. Weissler, Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros, J. Differ. Equ., 83 (1990), 368-373.  doi: 10.1016/0022-0396(90)90063-U.
    [15] L. SankarS. Sasi and R. Shivaji, Semipositone problems with falling zeros on exterior domains, J. Math. Anal. Appl., 401 (2013), 146-153.  doi: 10.1016/j.jmaa.2012.11.031.
    [16] W. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162. 
  • 加载中
SHARE

Article Metrics

HTML views(401) PDF downloads(276) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return