• Previous Article
    Existence of monotone positive solutions of a neighbour based chemotaxis model and aggregation phenomenon
  • CPAA Home
  • This Issue
  • Next Article
    Existence of infinitely many solutions for semilinear problems on exterior domains
September  2020, 19(9): 4285-4325. doi: 10.3934/cpaa.2020194

On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation

Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga, 64049-550, Teresina-PI, Brazil

Received  September 2019 Revised  March 2020 Published  June 2020

Fund Project: The author was supported by CNPq 140383/2013-1

In this paper we study special properties of solutions of the initial value problem (IVP) associated to the Benjamin-Ono-Zakharov-Kuznetsov (BO-ZK) equation. We prove that if initial data has some prescribed regularity on the right hand side of the real line, then this regularity is propagated with infinite speed by the flow solution. In other words, the extra regularity on the data propagates in the solutions in the direction of the dispersion. The method of proof to obtain our result uses weighted energy estimates arguments combined with the smoothing properties of the solutions. Hence we need to have local well-posedness for the associated IVP via compactness method. In particular, we establish a local well-posedness in the usual $ L^{2}( \mathbb R^2) $-based Sobolev spaces $ H^s( \mathbb R^2) $ for $ s>\frac{5}{4} $ which coincides with the best available result in the literature proved employing more complicated tools.

Citation: A. C. Nascimento. On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4285-4325. doi: 10.3934/cpaa.2020194
References:
[1]

B. Bajvsank and R. Coifman, On singular integrals, in Proc. Symp. Pure Math., American Mathematical Society, Providence, RI, (1966), 1–17.  Google Scholar

[2]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.   Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[4]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. London. Ser. A, 278 (1975), 555-601.  doi: 10.1098/rsta.197A.0035.  Google Scholar

[5]

A. P. Calderón, Commutators of singular integral operators, Proc. Natl. Acad. Sci. USA, 53 (1965), 1092-1099.  doi: 10.1073/pnas.53.A.1092.  Google Scholar

[6]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differ. Equ., 261 (2016), 2041-2067.  doi: 10.1016/j.jde.2016.04.022.  Google Scholar

[7]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces, J. Math. Anal. Appl., 417 (2014), 660-693.  doi: 10.1016/j.jmaa.2014.03.056.  Google Scholar

[8]

L. DawsonH. McGahagan and G. Ponce, On the decay properties of solutions to a class of Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2081-2090.  doi: 10.1090/S0002-9939-08-09355-6.  Google Scholar

[9]

A. Esfahani and A. Pastor, Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139 (2011), 943-956.  doi: 10.1090/S0002-9939-2010-10532-4.  Google Scholar

[10]

A. Esfahani and A. Pastor, Instability of solitary wave solutions for the generalized BO-ZK equation, J. Differ. Equ., 247 (2009), 3181-3201.  doi: 10.1016/j.jde.2009.09.014.  Google Scholar

[11]

A. Esfahani and A. Pastor, Sharp constant of an anisotropic Gagliardo-Nirenberg-type inequality and applications, Bull. Braz. Math. Soc. (N.S.), 48 (2017), 171-185.  doi: 10.1007/s00574-016-0017-5.  Google Scholar

[12]

A. Esfahani and A. Pastor, On the unique continuation property for Kadomtsev-Petviashvili-I and Benjamin-Ono-Zakharov-Kuznetsov equations, Bull. Lond. Math. Soc., 43 (2011), 1130-1140.  doi: 10.1112/blms/bdr048.  Google Scholar

[13]

A. EsfahaniA. Pastor and J. L. Bona, Stability and decay properties of solitary-wave solutions for the generalized BO-ZK equation, Adv. Differ. Equ., 20 (2015), 801-834.   Google Scholar

[14]

G. B. Folland, Introduction to Partial Differential Equations, 2$^{nd}$ edition, Princeton University Press, Princeton, NJ, 1995.  Google Scholar

[15]

L. Grafakos and O. Seungly, The Kato-Ponce Inequality, Commun. Partial Differ. Equ., 39 (2014), 1128-1157.  doi: 10.1080/03605302.2013.822885.  Google Scholar

[16]

R. J. Iório Jr., On the Cauchy problem for the Benjamin-Ono equation, Commun. Partial Differ. Equ., 11 (1986), 1031-1081.  doi: 10.1080/03605308608820456.  Google Scholar

[17]

A. D. IonescuC. Kenig and D. Tataru, Global well-posedness of the initial value problem for the KP I equation in the energy space, Invent. Math., 173 (2008), 265-304.  doi: 10.1007/s00222-008-0115-0.  Google Scholar

[18]

P. IsazaF. Linares and G. Ponce, On the propagation of regularities in solutions of the Benjamin-Ono equation, J. Funct. Anal., 270 (2016), 976-1000.  doi: 10.1016/j.jfa.201A.11.009.  Google Scholar

[19]

P. IsazaF. Linares and G. Ponce, On the propagation of regularity of solutions of the Kadomtsev-Petviashvili equation, SIAM J. Math. Anal., 48 (2016), 1006-1024.  doi: 10.1137/15M1012098.  Google Scholar

[20]

P. IsazaF. Linares and G. Ponce, On the propagation of regularity and decay of solutions to the k-generalized Korteweg-de Vries equation, Commun. Partial Differ. Equ., 40 (2015), 1336-1364.  doi: 10.1080/03605302.2014.985794.  Google Scholar

[21]

M. C. Jorge, G. Cruz-Pacheco, L. Mier-y-Teran-Romero and N. F. Smyth, Evolution of two-dimensional lump nanosolitons for the Zakharov-Kuznetsov and electromigration equations, Chaos, 15 (2005), Art. 037104. doi: 10.1063/1.1877892.  Google Scholar

[22]

T. Kato, On the Cauchy Problem for the (Generalized) Korteweg-de Vries Equation, in Advances in Mathematics Supplementary Studies, Studies in Applied Mathematics, Vol. 8, London, Academic Press, (1983), 93–128.  Google Scholar

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. doi: 10.1002/cpa.3160410704.  Google Scholar

[24]

C. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann. Inst. Henri Poincare Anal. Non Lineaire, 21 (2004), 827-838.  doi: 10.1016/j.anihpc.2003.12.002.  Google Scholar

[25]

C. Kenig and K. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003), 879-895.  doi: 10.4310/MRL.2003.v10.n6.a13.  Google Scholar

[26]

C. E. KenigF. LinaresG. Ponce and L. Vega, On the regularity of solutions to the k-generalized Korteweg-de Vries equation, Proc. Amer. Math. Soc., 146 (2018), 3759-3766.  doi: 10.1090/proc/13506.  Google Scholar

[27]

C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.2307/2939277.  Google Scholar

[28]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Commun. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[29]

C. E. Kenig and S. N. Ziesler, Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation, commun. Pure Appl. Anal., 4 (2005), 45-91.  doi: 10.3934/cpaa.200A.4.45.  Google Scholar

[30]

H. Koch and N. Tzvetkov, On the Local Well-Posedness of the Benjamin-Ono equation in $H^{s}(\mathbb R)$, Int. Math. Res. Not., 26 (2003), 1449-1464.  doi: 10.1155/S1073792803211260.  Google Scholar

[31]

J. C. Latorre, A. A. Minzoni, N. F. Smyth and C. A. Vargas, Evolution of Benjamin-Ono solitons in the presence of weak Zakharov-Kuznetsov lateral dispersion, Chaos, 16 (2006), Art. 043103. doi: 10.1063/1.2355555.  Google Scholar

[32]

D. Li, On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoam., 35 (2019), 23-100.  doi: 10.4171/rmi/1049.  Google Scholar

[33]

F. Linares, H. Miyazaki and G. Ponce, On a class of solutions to the generalized KdV type equation, Commun. Contemp. Math., (2019). doi: 10.1142/S0219199718500566.  Google Scholar

[34]

F. LinaresD. Pilod and J. C. Saut, The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Anal., 50 (2018), 3172-3209.  doi: 10.1137/17M1145379.  Google Scholar

[35]

F. LinaresG. Ponce and D. L. Smith, On the regularity of solutions to a class of nonlinear dispersive equations, Math. Ann., 369 (2017), 797-837.  doi: 10.1007/s00208-016-1452-8.  Google Scholar

[36]

F. Linares and G. Ponce, On special regularity Properties of Solutions of the Zakharov-Kuznetsov Equation, Commun. Pure Appl. Anal., 17 (2018), 1561-1572.  doi: 10.3934/cpaa.2018074.  Google Scholar

[37]

A. J. Mendez, On the propagation of regularity for solutions of the dispersion generalized Benjamin-Ono equation, to appear in Anal. Partial Differ. Equ., arXiv: 1901.00823. Google Scholar

[38]

A. J. Mendez, On the propagation of regularity for solutions of the fractional Korteweg-de Vries equation, preprint, arXiv: 1902.08296. Google Scholar

[39]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.  doi: 10.1137/S0036141001385307.  Google Scholar

[40]

C. MuscaluJ. PipherT. Tau and C. Thiele, Bi-parameter paraproducts, Acta Math., 193 (2004), 269-296.  doi: 10.1007/BF02392566.  Google Scholar

[41]

A. C. Nascimento, On the propagation of regularities in solutions of the fifth order Kadomtsev-Petviashvili II equation, J. Math. Anal. Appl., 478 (2019), 156-181.  doi: 10.1016/j.jmaa.2019.0A.024.  Google Scholar

[42]

A. C. Nascimento, On the properties in the solutions of a Kadomtsev-Petviashvili-Benjamin-Ono(KP-BO) equation, preprint. Google Scholar

[43]

H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Jpn., 39 (1975), 1082-1091.  doi: 10.1143/JPSJ.39.1082.  Google Scholar

[44]

F. Ribaud and S. Vento, Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 37 (2017), 449-483.  doi: 10.3934/dcds.2017019.  Google Scholar

[45]

V. Zakharov and E. Kuznetsov, Three-dimensional solitons, Sov. Phys. JETP, 39 (1974), 285-286.   Google Scholar

show all references

References:
[1]

B. Bajvsank and R. Coifman, On singular integrals, in Proc. Symp. Pure Math., American Mathematical Society, Providence, RI, (1966), 1–17.  Google Scholar

[2]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.   Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[4]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. London. Ser. A, 278 (1975), 555-601.  doi: 10.1098/rsta.197A.0035.  Google Scholar

[5]

A. P. Calderón, Commutators of singular integral operators, Proc. Natl. Acad. Sci. USA, 53 (1965), 1092-1099.  doi: 10.1073/pnas.53.A.1092.  Google Scholar

[6]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differ. Equ., 261 (2016), 2041-2067.  doi: 10.1016/j.jde.2016.04.022.  Google Scholar

[7]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces, J. Math. Anal. Appl., 417 (2014), 660-693.  doi: 10.1016/j.jmaa.2014.03.056.  Google Scholar

[8]

L. DawsonH. McGahagan and G. Ponce, On the decay properties of solutions to a class of Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2081-2090.  doi: 10.1090/S0002-9939-08-09355-6.  Google Scholar

[9]

A. Esfahani and A. Pastor, Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139 (2011), 943-956.  doi: 10.1090/S0002-9939-2010-10532-4.  Google Scholar

[10]

A. Esfahani and A. Pastor, Instability of solitary wave solutions for the generalized BO-ZK equation, J. Differ. Equ., 247 (2009), 3181-3201.  doi: 10.1016/j.jde.2009.09.014.  Google Scholar

[11]

A. Esfahani and A. Pastor, Sharp constant of an anisotropic Gagliardo-Nirenberg-type inequality and applications, Bull. Braz. Math. Soc. (N.S.), 48 (2017), 171-185.  doi: 10.1007/s00574-016-0017-5.  Google Scholar

[12]

A. Esfahani and A. Pastor, On the unique continuation property for Kadomtsev-Petviashvili-I and Benjamin-Ono-Zakharov-Kuznetsov equations, Bull. Lond. Math. Soc., 43 (2011), 1130-1140.  doi: 10.1112/blms/bdr048.  Google Scholar

[13]

A. EsfahaniA. Pastor and J. L. Bona, Stability and decay properties of solitary-wave solutions for the generalized BO-ZK equation, Adv. Differ. Equ., 20 (2015), 801-834.   Google Scholar

[14]

G. B. Folland, Introduction to Partial Differential Equations, 2$^{nd}$ edition, Princeton University Press, Princeton, NJ, 1995.  Google Scholar

[15]

L. Grafakos and O. Seungly, The Kato-Ponce Inequality, Commun. Partial Differ. Equ., 39 (2014), 1128-1157.  doi: 10.1080/03605302.2013.822885.  Google Scholar

[16]

R. J. Iório Jr., On the Cauchy problem for the Benjamin-Ono equation, Commun. Partial Differ. Equ., 11 (1986), 1031-1081.  doi: 10.1080/03605308608820456.  Google Scholar

[17]

A. D. IonescuC. Kenig and D. Tataru, Global well-posedness of the initial value problem for the KP I equation in the energy space, Invent. Math., 173 (2008), 265-304.  doi: 10.1007/s00222-008-0115-0.  Google Scholar

[18]

P. IsazaF. Linares and G. Ponce, On the propagation of regularities in solutions of the Benjamin-Ono equation, J. Funct. Anal., 270 (2016), 976-1000.  doi: 10.1016/j.jfa.201A.11.009.  Google Scholar

[19]

P. IsazaF. Linares and G. Ponce, On the propagation of regularity of solutions of the Kadomtsev-Petviashvili equation, SIAM J. Math. Anal., 48 (2016), 1006-1024.  doi: 10.1137/15M1012098.  Google Scholar

[20]

P. IsazaF. Linares and G. Ponce, On the propagation of regularity and decay of solutions to the k-generalized Korteweg-de Vries equation, Commun. Partial Differ. Equ., 40 (2015), 1336-1364.  doi: 10.1080/03605302.2014.985794.  Google Scholar

[21]

M. C. Jorge, G. Cruz-Pacheco, L. Mier-y-Teran-Romero and N. F. Smyth, Evolution of two-dimensional lump nanosolitons for the Zakharov-Kuznetsov and electromigration equations, Chaos, 15 (2005), Art. 037104. doi: 10.1063/1.1877892.  Google Scholar

[22]

T. Kato, On the Cauchy Problem for the (Generalized) Korteweg-de Vries Equation, in Advances in Mathematics Supplementary Studies, Studies in Applied Mathematics, Vol. 8, London, Academic Press, (1983), 93–128.  Google Scholar

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. doi: 10.1002/cpa.3160410704.  Google Scholar

[24]

C. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann. Inst. Henri Poincare Anal. Non Lineaire, 21 (2004), 827-838.  doi: 10.1016/j.anihpc.2003.12.002.  Google Scholar

[25]

C. Kenig and K. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003), 879-895.  doi: 10.4310/MRL.2003.v10.n6.a13.  Google Scholar

[26]

C. E. KenigF. LinaresG. Ponce and L. Vega, On the regularity of solutions to the k-generalized Korteweg-de Vries equation, Proc. Amer. Math. Soc., 146 (2018), 3759-3766.  doi: 10.1090/proc/13506.  Google Scholar

[27]

C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.2307/2939277.  Google Scholar

[28]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Commun. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[29]

C. E. Kenig and S. N. Ziesler, Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation, commun. Pure Appl. Anal., 4 (2005), 45-91.  doi: 10.3934/cpaa.200A.4.45.  Google Scholar

[30]

H. Koch and N. Tzvetkov, On the Local Well-Posedness of the Benjamin-Ono equation in $H^{s}(\mathbb R)$, Int. Math. Res. Not., 26 (2003), 1449-1464.  doi: 10.1155/S1073792803211260.  Google Scholar

[31]

J. C. Latorre, A. A. Minzoni, N. F. Smyth and C. A. Vargas, Evolution of Benjamin-Ono solitons in the presence of weak Zakharov-Kuznetsov lateral dispersion, Chaos, 16 (2006), Art. 043103. doi: 10.1063/1.2355555.  Google Scholar

[32]

D. Li, On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoam., 35 (2019), 23-100.  doi: 10.4171/rmi/1049.  Google Scholar

[33]

F. Linares, H. Miyazaki and G. Ponce, On a class of solutions to the generalized KdV type equation, Commun. Contemp. Math., (2019). doi: 10.1142/S0219199718500566.  Google Scholar

[34]

F. LinaresD. Pilod and J. C. Saut, The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Anal., 50 (2018), 3172-3209.  doi: 10.1137/17M1145379.  Google Scholar

[35]

F. LinaresG. Ponce and D. L. Smith, On the regularity of solutions to a class of nonlinear dispersive equations, Math. Ann., 369 (2017), 797-837.  doi: 10.1007/s00208-016-1452-8.  Google Scholar

[36]

F. Linares and G. Ponce, On special regularity Properties of Solutions of the Zakharov-Kuznetsov Equation, Commun. Pure Appl. Anal., 17 (2018), 1561-1572.  doi: 10.3934/cpaa.2018074.  Google Scholar

[37]

A. J. Mendez, On the propagation of regularity for solutions of the dispersion generalized Benjamin-Ono equation, to appear in Anal. Partial Differ. Equ., arXiv: 1901.00823. Google Scholar

[38]

A. J. Mendez, On the propagation of regularity for solutions of the fractional Korteweg-de Vries equation, preprint, arXiv: 1902.08296. Google Scholar

[39]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.  doi: 10.1137/S0036141001385307.  Google Scholar

[40]

C. MuscaluJ. PipherT. Tau and C. Thiele, Bi-parameter paraproducts, Acta Math., 193 (2004), 269-296.  doi: 10.1007/BF02392566.  Google Scholar

[41]

A. C. Nascimento, On the propagation of regularities in solutions of the fifth order Kadomtsev-Petviashvili II equation, J. Math. Anal. Appl., 478 (2019), 156-181.  doi: 10.1016/j.jmaa.2019.0A.024.  Google Scholar

[42]

A. C. Nascimento, On the properties in the solutions of a Kadomtsev-Petviashvili-Benjamin-Ono(KP-BO) equation, preprint. Google Scholar

[43]

H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Jpn., 39 (1975), 1082-1091.  doi: 10.1143/JPSJ.39.1082.  Google Scholar

[44]

F. Ribaud and S. Vento, Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 37 (2017), 449-483.  doi: 10.3934/dcds.2017019.  Google Scholar

[45]

V. Zakharov and E. Kuznetsov, Three-dimensional solitons, Sov. Phys. JETP, 39 (1974), 285-286.   Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[5]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[7]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[8]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[9]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[15]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[16]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[19]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[20]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (117)
  • HTML views (96)
  • Cited by (1)

Other articles
by authors

[Back to Top]