• Previous Article
    Existence of monotone positive solutions of a neighbour based chemotaxis model and aggregation phenomenon
  • CPAA Home
  • This Issue
  • Next Article
    Existence of infinitely many solutions for semilinear problems on exterior domains
September  2020, 19(9): 4285-4325. doi: 10.3934/cpaa.2020194

On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation

Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga, 64049-550, Teresina-PI, Brazil

Received  September 2019 Revised  March 2020 Published  June 2020

Fund Project: The author was supported by CNPq 140383/2013-1

In this paper we study special properties of solutions of the initial value problem (IVP) associated to the Benjamin-Ono-Zakharov-Kuznetsov (BO-ZK) equation. We prove that if initial data has some prescribed regularity on the right hand side of the real line, then this regularity is propagated with infinite speed by the flow solution. In other words, the extra regularity on the data propagates in the solutions in the direction of the dispersion. The method of proof to obtain our result uses weighted energy estimates arguments combined with the smoothing properties of the solutions. Hence we need to have local well-posedness for the associated IVP via compactness method. In particular, we establish a local well-posedness in the usual $ L^{2}( \mathbb R^2) $-based Sobolev spaces $ H^s( \mathbb R^2) $ for $ s>\frac{5}{4} $ which coincides with the best available result in the literature proved employing more complicated tools.

Citation: A. C. Nascimento. On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4285-4325. doi: 10.3934/cpaa.2020194
References:
[1]

B. Bajvsank and R. Coifman, On singular integrals, in Proc. Symp. Pure Math., American Mathematical Society, Providence, RI, (1966), 1–17.  Google Scholar

[2]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.   Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[4]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. London. Ser. A, 278 (1975), 555-601.  doi: 10.1098/rsta.197A.0035.  Google Scholar

[5]

A. P. Calderón, Commutators of singular integral operators, Proc. Natl. Acad. Sci. USA, 53 (1965), 1092-1099.  doi: 10.1073/pnas.53.A.1092.  Google Scholar

[6]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differ. Equ., 261 (2016), 2041-2067.  doi: 10.1016/j.jde.2016.04.022.  Google Scholar

[7]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces, J. Math. Anal. Appl., 417 (2014), 660-693.  doi: 10.1016/j.jmaa.2014.03.056.  Google Scholar

[8]

L. DawsonH. McGahagan and G. Ponce, On the decay properties of solutions to a class of Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2081-2090.  doi: 10.1090/S0002-9939-08-09355-6.  Google Scholar

[9]

A. Esfahani and A. Pastor, Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139 (2011), 943-956.  doi: 10.1090/S0002-9939-2010-10532-4.  Google Scholar

[10]

A. Esfahani and A. Pastor, Instability of solitary wave solutions for the generalized BO-ZK equation, J. Differ. Equ., 247 (2009), 3181-3201.  doi: 10.1016/j.jde.2009.09.014.  Google Scholar

[11]

A. Esfahani and A. Pastor, Sharp constant of an anisotropic Gagliardo-Nirenberg-type inequality and applications, Bull. Braz. Math. Soc. (N.S.), 48 (2017), 171-185.  doi: 10.1007/s00574-016-0017-5.  Google Scholar

[12]

A. Esfahani and A. Pastor, On the unique continuation property for Kadomtsev-Petviashvili-I and Benjamin-Ono-Zakharov-Kuznetsov equations, Bull. Lond. Math. Soc., 43 (2011), 1130-1140.  doi: 10.1112/blms/bdr048.  Google Scholar

[13]

A. EsfahaniA. Pastor and J. L. Bona, Stability and decay properties of solitary-wave solutions for the generalized BO-ZK equation, Adv. Differ. Equ., 20 (2015), 801-834.   Google Scholar

[14]

G. B. Folland, Introduction to Partial Differential Equations, 2$^{nd}$ edition, Princeton University Press, Princeton, NJ, 1995.  Google Scholar

[15]

L. Grafakos and O. Seungly, The Kato-Ponce Inequality, Commun. Partial Differ. Equ., 39 (2014), 1128-1157.  doi: 10.1080/03605302.2013.822885.  Google Scholar

[16]

R. J. Iório Jr., On the Cauchy problem for the Benjamin-Ono equation, Commun. Partial Differ. Equ., 11 (1986), 1031-1081.  doi: 10.1080/03605308608820456.  Google Scholar

[17]

A. D. IonescuC. Kenig and D. Tataru, Global well-posedness of the initial value problem for the KP I equation in the energy space, Invent. Math., 173 (2008), 265-304.  doi: 10.1007/s00222-008-0115-0.  Google Scholar

[18]

P. IsazaF. Linares and G. Ponce, On the propagation of regularities in solutions of the Benjamin-Ono equation, J. Funct. Anal., 270 (2016), 976-1000.  doi: 10.1016/j.jfa.201A.11.009.  Google Scholar

[19]

P. IsazaF. Linares and G. Ponce, On the propagation of regularity of solutions of the Kadomtsev-Petviashvili equation, SIAM J. Math. Anal., 48 (2016), 1006-1024.  doi: 10.1137/15M1012098.  Google Scholar

[20]

P. IsazaF. Linares and G. Ponce, On the propagation of regularity and decay of solutions to the k-generalized Korteweg-de Vries equation, Commun. Partial Differ. Equ., 40 (2015), 1336-1364.  doi: 10.1080/03605302.2014.985794.  Google Scholar

[21]

M. C. Jorge, G. Cruz-Pacheco, L. Mier-y-Teran-Romero and N. F. Smyth, Evolution of two-dimensional lump nanosolitons for the Zakharov-Kuznetsov and electromigration equations, Chaos, 15 (2005), Art. 037104. doi: 10.1063/1.1877892.  Google Scholar

[22]

T. Kato, On the Cauchy Problem for the (Generalized) Korteweg-de Vries Equation, in Advances in Mathematics Supplementary Studies, Studies in Applied Mathematics, Vol. 8, London, Academic Press, (1983), 93–128.  Google Scholar

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. doi: 10.1002/cpa.3160410704.  Google Scholar

[24]

C. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann. Inst. Henri Poincare Anal. Non Lineaire, 21 (2004), 827-838.  doi: 10.1016/j.anihpc.2003.12.002.  Google Scholar

[25]

C. Kenig and K. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003), 879-895.  doi: 10.4310/MRL.2003.v10.n6.a13.  Google Scholar

[26]

C. E. KenigF. LinaresG. Ponce and L. Vega, On the regularity of solutions to the k-generalized Korteweg-de Vries equation, Proc. Amer. Math. Soc., 146 (2018), 3759-3766.  doi: 10.1090/proc/13506.  Google Scholar

[27]

C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.2307/2939277.  Google Scholar

[28]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Commun. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[29]

C. E. Kenig and S. N. Ziesler, Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation, commun. Pure Appl. Anal., 4 (2005), 45-91.  doi: 10.3934/cpaa.200A.4.45.  Google Scholar

[30]

H. Koch and N. Tzvetkov, On the Local Well-Posedness of the Benjamin-Ono equation in $H^{s}(\mathbb R)$, Int. Math. Res. Not., 26 (2003), 1449-1464.  doi: 10.1155/S1073792803211260.  Google Scholar

[31]

J. C. Latorre, A. A. Minzoni, N. F. Smyth and C. A. Vargas, Evolution of Benjamin-Ono solitons in the presence of weak Zakharov-Kuznetsov lateral dispersion, Chaos, 16 (2006), Art. 043103. doi: 10.1063/1.2355555.  Google Scholar

[32]

D. Li, On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoam., 35 (2019), 23-100.  doi: 10.4171/rmi/1049.  Google Scholar

[33]

F. Linares, H. Miyazaki and G. Ponce, On a class of solutions to the generalized KdV type equation, Commun. Contemp. Math., (2019). doi: 10.1142/S0219199718500566.  Google Scholar

[34]

F. LinaresD. Pilod and J. C. Saut, The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Anal., 50 (2018), 3172-3209.  doi: 10.1137/17M1145379.  Google Scholar

[35]

F. LinaresG. Ponce and D. L. Smith, On the regularity of solutions to a class of nonlinear dispersive equations, Math. Ann., 369 (2017), 797-837.  doi: 10.1007/s00208-016-1452-8.  Google Scholar

[36]

F. Linares and G. Ponce, On special regularity Properties of Solutions of the Zakharov-Kuznetsov Equation, Commun. Pure Appl. Anal., 17 (2018), 1561-1572.  doi: 10.3934/cpaa.2018074.  Google Scholar

[37]

A. J. Mendez, On the propagation of regularity for solutions of the dispersion generalized Benjamin-Ono equation, to appear in Anal. Partial Differ. Equ., arXiv: 1901.00823. Google Scholar

[38]

A. J. Mendez, On the propagation of regularity for solutions of the fractional Korteweg-de Vries equation, preprint, arXiv: 1902.08296. Google Scholar

[39]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.  doi: 10.1137/S0036141001385307.  Google Scholar

[40]

C. MuscaluJ. PipherT. Tau and C. Thiele, Bi-parameter paraproducts, Acta Math., 193 (2004), 269-296.  doi: 10.1007/BF02392566.  Google Scholar

[41]

A. C. Nascimento, On the propagation of regularities in solutions of the fifth order Kadomtsev-Petviashvili II equation, J. Math. Anal. Appl., 478 (2019), 156-181.  doi: 10.1016/j.jmaa.2019.0A.024.  Google Scholar

[42]

A. C. Nascimento, On the properties in the solutions of a Kadomtsev-Petviashvili-Benjamin-Ono(KP-BO) equation, preprint. Google Scholar

[43]

H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Jpn., 39 (1975), 1082-1091.  doi: 10.1143/JPSJ.39.1082.  Google Scholar

[44]

F. Ribaud and S. Vento, Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 37 (2017), 449-483.  doi: 10.3934/dcds.2017019.  Google Scholar

[45]

V. Zakharov and E. Kuznetsov, Three-dimensional solitons, Sov. Phys. JETP, 39 (1974), 285-286.   Google Scholar

show all references

References:
[1]

B. Bajvsank and R. Coifman, On singular integrals, in Proc. Symp. Pure Math., American Mathematical Society, Providence, RI, (1966), 1–17.  Google Scholar

[2]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.   Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[4]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. London. Ser. A, 278 (1975), 555-601.  doi: 10.1098/rsta.197A.0035.  Google Scholar

[5]

A. P. Calderón, Commutators of singular integral operators, Proc. Natl. Acad. Sci. USA, 53 (1965), 1092-1099.  doi: 10.1073/pnas.53.A.1092.  Google Scholar

[6]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differ. Equ., 261 (2016), 2041-2067.  doi: 10.1016/j.jde.2016.04.022.  Google Scholar

[7]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces, J. Math. Anal. Appl., 417 (2014), 660-693.  doi: 10.1016/j.jmaa.2014.03.056.  Google Scholar

[8]

L. DawsonH. McGahagan and G. Ponce, On the decay properties of solutions to a class of Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2081-2090.  doi: 10.1090/S0002-9939-08-09355-6.  Google Scholar

[9]

A. Esfahani and A. Pastor, Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139 (2011), 943-956.  doi: 10.1090/S0002-9939-2010-10532-4.  Google Scholar

[10]

A. Esfahani and A. Pastor, Instability of solitary wave solutions for the generalized BO-ZK equation, J. Differ. Equ., 247 (2009), 3181-3201.  doi: 10.1016/j.jde.2009.09.014.  Google Scholar

[11]

A. Esfahani and A. Pastor, Sharp constant of an anisotropic Gagliardo-Nirenberg-type inequality and applications, Bull. Braz. Math. Soc. (N.S.), 48 (2017), 171-185.  doi: 10.1007/s00574-016-0017-5.  Google Scholar

[12]

A. Esfahani and A. Pastor, On the unique continuation property for Kadomtsev-Petviashvili-I and Benjamin-Ono-Zakharov-Kuznetsov equations, Bull. Lond. Math. Soc., 43 (2011), 1130-1140.  doi: 10.1112/blms/bdr048.  Google Scholar

[13]

A. EsfahaniA. Pastor and J. L. Bona, Stability and decay properties of solitary-wave solutions for the generalized BO-ZK equation, Adv. Differ. Equ., 20 (2015), 801-834.   Google Scholar

[14]

G. B. Folland, Introduction to Partial Differential Equations, 2$^{nd}$ edition, Princeton University Press, Princeton, NJ, 1995.  Google Scholar

[15]

L. Grafakos and O. Seungly, The Kato-Ponce Inequality, Commun. Partial Differ. Equ., 39 (2014), 1128-1157.  doi: 10.1080/03605302.2013.822885.  Google Scholar

[16]

R. J. Iório Jr., On the Cauchy problem for the Benjamin-Ono equation, Commun. Partial Differ. Equ., 11 (1986), 1031-1081.  doi: 10.1080/03605308608820456.  Google Scholar

[17]

A. D. IonescuC. Kenig and D. Tataru, Global well-posedness of the initial value problem for the KP I equation in the energy space, Invent. Math., 173 (2008), 265-304.  doi: 10.1007/s00222-008-0115-0.  Google Scholar

[18]

P. IsazaF. Linares and G. Ponce, On the propagation of regularities in solutions of the Benjamin-Ono equation, J. Funct. Anal., 270 (2016), 976-1000.  doi: 10.1016/j.jfa.201A.11.009.  Google Scholar

[19]

P. IsazaF. Linares and G. Ponce, On the propagation of regularity of solutions of the Kadomtsev-Petviashvili equation, SIAM J. Math. Anal., 48 (2016), 1006-1024.  doi: 10.1137/15M1012098.  Google Scholar

[20]

P. IsazaF. Linares and G. Ponce, On the propagation of regularity and decay of solutions to the k-generalized Korteweg-de Vries equation, Commun. Partial Differ. Equ., 40 (2015), 1336-1364.  doi: 10.1080/03605302.2014.985794.  Google Scholar

[21]

M. C. Jorge, G. Cruz-Pacheco, L. Mier-y-Teran-Romero and N. F. Smyth, Evolution of two-dimensional lump nanosolitons for the Zakharov-Kuznetsov and electromigration equations, Chaos, 15 (2005), Art. 037104. doi: 10.1063/1.1877892.  Google Scholar

[22]

T. Kato, On the Cauchy Problem for the (Generalized) Korteweg-de Vries Equation, in Advances in Mathematics Supplementary Studies, Studies in Applied Mathematics, Vol. 8, London, Academic Press, (1983), 93–128.  Google Scholar

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. doi: 10.1002/cpa.3160410704.  Google Scholar

[24]

C. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann. Inst. Henri Poincare Anal. Non Lineaire, 21 (2004), 827-838.  doi: 10.1016/j.anihpc.2003.12.002.  Google Scholar

[25]

C. Kenig and K. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003), 879-895.  doi: 10.4310/MRL.2003.v10.n6.a13.  Google Scholar

[26]

C. E. KenigF. LinaresG. Ponce and L. Vega, On the regularity of solutions to the k-generalized Korteweg-de Vries equation, Proc. Amer. Math. Soc., 146 (2018), 3759-3766.  doi: 10.1090/proc/13506.  Google Scholar

[27]

C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.2307/2939277.  Google Scholar

[28]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Commun. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[29]

C. E. Kenig and S. N. Ziesler, Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation, commun. Pure Appl. Anal., 4 (2005), 45-91.  doi: 10.3934/cpaa.200A.4.45.  Google Scholar

[30]

H. Koch and N. Tzvetkov, On the Local Well-Posedness of the Benjamin-Ono equation in $H^{s}(\mathbb R)$, Int. Math. Res. Not., 26 (2003), 1449-1464.  doi: 10.1155/S1073792803211260.  Google Scholar

[31]

J. C. Latorre, A. A. Minzoni, N. F. Smyth and C. A. Vargas, Evolution of Benjamin-Ono solitons in the presence of weak Zakharov-Kuznetsov lateral dispersion, Chaos, 16 (2006), Art. 043103. doi: 10.1063/1.2355555.  Google Scholar

[32]

D. Li, On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoam., 35 (2019), 23-100.  doi: 10.4171/rmi/1049.  Google Scholar

[33]

F. Linares, H. Miyazaki and G. Ponce, On a class of solutions to the generalized KdV type equation, Commun. Contemp. Math., (2019). doi: 10.1142/S0219199718500566.  Google Scholar

[34]

F. LinaresD. Pilod and J. C. Saut, The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Anal., 50 (2018), 3172-3209.  doi: 10.1137/17M1145379.  Google Scholar

[35]

F. LinaresG. Ponce and D. L. Smith, On the regularity of solutions to a class of nonlinear dispersive equations, Math. Ann., 369 (2017), 797-837.  doi: 10.1007/s00208-016-1452-8.  Google Scholar

[36]

F. Linares and G. Ponce, On special regularity Properties of Solutions of the Zakharov-Kuznetsov Equation, Commun. Pure Appl. Anal., 17 (2018), 1561-1572.  doi: 10.3934/cpaa.2018074.  Google Scholar

[37]

A. J. Mendez, On the propagation of regularity for solutions of the dispersion generalized Benjamin-Ono equation, to appear in Anal. Partial Differ. Equ., arXiv: 1901.00823. Google Scholar

[38]

A. J. Mendez, On the propagation of regularity for solutions of the fractional Korteweg-de Vries equation, preprint, arXiv: 1902.08296. Google Scholar

[39]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.  doi: 10.1137/S0036141001385307.  Google Scholar

[40]

C. MuscaluJ. PipherT. Tau and C. Thiele, Bi-parameter paraproducts, Acta Math., 193 (2004), 269-296.  doi: 10.1007/BF02392566.  Google Scholar

[41]

A. C. Nascimento, On the propagation of regularities in solutions of the fifth order Kadomtsev-Petviashvili II equation, J. Math. Anal. Appl., 478 (2019), 156-181.  doi: 10.1016/j.jmaa.2019.0A.024.  Google Scholar

[42]

A. C. Nascimento, On the properties in the solutions of a Kadomtsev-Petviashvili-Benjamin-Ono(KP-BO) equation, preprint. Google Scholar

[43]

H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Jpn., 39 (1975), 1082-1091.  doi: 10.1143/JPSJ.39.1082.  Google Scholar

[44]

F. Ribaud and S. Vento, Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 37 (2017), 449-483.  doi: 10.3934/dcds.2017019.  Google Scholar

[45]

V. Zakharov and E. Kuznetsov, Three-dimensional solitons, Sov. Phys. JETP, 39 (1974), 285-286.   Google Scholar

[1]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[2]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[3]

Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019

[4]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[5]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[6]

Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087

[7]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[8]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[9]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[10]

Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure & Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737

[11]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[12]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[13]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[14]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic & Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[15]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[16]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[17]

Hui Huang, Jian-Guo Liu. Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic & Related Models, 2016, 9 (4) : 715-748. doi: 10.3934/krm.2016013

[18]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[19]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[20]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

2019 Impact Factor: 1.105

Article outline

[Back to Top]