• Previous Article
    Asymptotic behavior of solutions for nonlinear integral equations with Hénon type on the unit Ball
  • CPAA Home
  • This Issue
  • Next Article
    On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation
September  2020, 19(9): 4327-4348. doi: 10.3934/cpaa.2020195

Existence of monotone positive solutions of a neighbour based chemotaxis model and aggregation phenomenon

Faculty of Science and Technology, University of Macau, Macau, China, co. Department of Mathematics, Southern University of Science and Technology, Shenzhen, 518055, China

Received  September 2019 Revised  February 2020 Published  June 2020

Fund Project: The author is supported by NSFC-11671190, NNSFC11571390, Macao S.A.R. (FDCT 038/ 2017/A1)

Using bifurcation theory, we prove the existence of spiky steady states and investigate the stability of bifurcating solutions of the one-dimensional continuous neighbour based chemotaxis model, in which the one-step jumping probability rate of cells is determined only by the chemoattractant concentration at the destination. These spiky steady states are crucial when we model cell aggregation, the most important phenomenon in chemotaxis.

Citation: Xin Xu. Existence of monotone positive solutions of a neighbour based chemotaxis model and aggregation phenomenon. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4327-4348. doi: 10.3934/cpaa.2020195
References:
[1]

J. Ahn and C. Yoon, Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32(4) (2019), 1327-1351.  doi: 10.1088/1361-6544/aaf513.  Google Scholar

[2]

H. B. ChenT. Bo and Q. Wang, Existence and stability of nonconstant positive steady states of morphogenesis models, Math. Meth. Appl. Sci., 38 (2015), 3833-3850.  doi: 10.1002/mma.3321.  Google Scholar

[3]

X. F. ChenJ. H. HaoX. F. WangY. P. Wu and Y. J. Zhang, Stability of spiky solution of Keller-Segel's minimal chemotaxis model, J. Differ. Equ., 257 (2014), 3102-3134.  doi: 10.1016/j.jde.2014.06.008.  Google Scholar

[4]

A. ChertockA. KurganovX. F. Wang and Y. P. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.  doi: 10.3934/krm.2012.5.51.  Google Scholar

[5]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 311-338.  doi: 10.1016/0025-5564(81)90055-9.  Google Scholar

[6]

M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch.Rational Mech.Anal, 52 (1973), 161-180.  doi: 10.1007/bf00282325.  Google Scholar

[7]

P. M. Fitzpatrick and J. Pejsachowicz, Parity and generilized multiplicity, Trans. Amer. Math. Soc., 326 (1991), 281-305.  doi: 10.2307/2001865.  Google Scholar

[8]

C. F. Gui and J. C. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differ. Equ, 158 (1999), 1-27.  doi: 10.1016/s0022-0396(99)80016-3.  Google Scholar

[9]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[10]

D. Horstmann, From 1970 untill present: the Keller-Segel model in chemotaxis, Jahresber DMV, 105 (2003), 103-165.   Google Scholar

[11]

D. Horstmann, From 1970 untill present: the Keller-Segel model in chemotaxis, Jahresber DMV, 106 (2004), 51-69.   Google Scholar

[12]

H. Y. JinY. J. Kim and Z. A. Wang, Boundedness, stabilization, and pattern forma-tion driven by density-suppressed motility, SIAM J. Appl. Math., 78(3) (2018), 1632-1657.  doi: 10.1137/17M1144647.  Google Scholar

[13]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[14]

E. Keller and L. Segel, Models for chemotaxis, Kinet. J. Theor. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[15]

H. C. Li, Spiky steady states of a chemotaxis system with singular sensitivity, J. Dyn. Differ. Equ., 30 (2018), 1775-1795.  doi: 10.1007/s10884-017-9621-3.  Google Scholar

[16]

C. S. LinW. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equ., 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[17]

M. Ma, R. Wang and Z. A. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Physica D, (2019). doi: 10.1016/j.physd.2019.132259.  Google Scholar

[18]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices. Amer. Math. Soc., 45 (1998), 9-18.   Google Scholar

[19]

W. M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke. Math. J., 70 (1993), 247-281.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[20]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM. J. Math. Anal. Vol., 57 (1997), 9-18.  doi: 10.1137/s0036139995288976.  Google Scholar

[21]

K. J. Painter and J. A. Sherratt, Modelling the movement of interacting cell populations, J. Theor. Biol., 225 (2003), 327-339.  doi: 10.1016/s0022-5193(03)00258-3.  Google Scholar

[22]

J. Pejsachowicz and P. J. Rabier, Degree theory for $C^1$ Fredholm mappings of index $0$, J. Anal. Math., 76 (1998), 289-319.  doi: 10.1007/BF02786939.  Google Scholar

[23]

A. B. Potapov and T. Hillen, Metastability in chemotaxis models, J. Dyn. Differ. Equ., 17 (2005), 293-330.  doi: 10.1007/s10884-005-2938-3.  Google Scholar

[24]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[25]

R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc, 292 (1985), 531-556.  doi: 10.2307/2000228.  Google Scholar

[26]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differ. Equ., 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[27]

B. SleemanM. Ward and J. C. Wei, The existence and stability of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 65 (2005), 790-817.  doi: 10.2307/4096197.  Google Scholar

[28]

J. Smith-RobergeD. Iron and T. Kolokolnikov, Pattern formation in bacterial colonies with density-dependent diffusion, Eur. J. Appl. Math., 30 (2019), 196-218.  doi: 10.1017/S0956792518000013.  Google Scholar

[29]

X. F Wang, Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics, SIAM. J. Math. Anal., 31 (2000), 535-560.  doi: 10.1137/S0036141098339897.  Google Scholar

[30]

Q. Wang, J. D. Yan and C. Y. Gai, Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth, Z. Angew. Math. Phys., 67 (2016). doi: 10.1007/s00033-016-0648-9.  Google Scholar

[31]

Q. Wang and X. F. Wang, Steady states and their qualitative properties of several classes of Keller-Segel models (in Chinese), Sci. Sin. Math., 49 (2019), 1911-1946.   Google Scholar

[32]

X. F Wang and Q. Xu, Spiky and transition layer steady state of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.  doi: 10.1007/s00285-012-0533-x.  Google Scholar

[33]

L. XinX. F. ChenM. X. WangC. Qin and Y. J. Zhang, Existence, uniqueness, and stability of bubble solutions of a chemotaxis model, Discrete Contin. Dyn. Syst., 36 (2016), 805-832.  doi: 10.3934/dcds.2016.36.805.  Google Scholar

[34]

Q. Xu, The Stability of Bifurcation Steady State of Serveral Classes of Chemotaxis Systems, Discrete Contin. Dyn. Syst. Ser. B., 20 (2015), 231-248.  doi: 10.3934/dcdsb.2015.20.231.  Google Scholar

[35]

C. Yoon and Y. J. Kim, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149 (2017), 101-123.  doi: 10.1007/s10440-016-0089-7.  Google Scholar

show all references

References:
[1]

J. Ahn and C. Yoon, Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32(4) (2019), 1327-1351.  doi: 10.1088/1361-6544/aaf513.  Google Scholar

[2]

H. B. ChenT. Bo and Q. Wang, Existence and stability of nonconstant positive steady states of morphogenesis models, Math. Meth. Appl. Sci., 38 (2015), 3833-3850.  doi: 10.1002/mma.3321.  Google Scholar

[3]

X. F. ChenJ. H. HaoX. F. WangY. P. Wu and Y. J. Zhang, Stability of spiky solution of Keller-Segel's minimal chemotaxis model, J. Differ. Equ., 257 (2014), 3102-3134.  doi: 10.1016/j.jde.2014.06.008.  Google Scholar

[4]

A. ChertockA. KurganovX. F. Wang and Y. P. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.  doi: 10.3934/krm.2012.5.51.  Google Scholar

[5]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 311-338.  doi: 10.1016/0025-5564(81)90055-9.  Google Scholar

[6]

M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch.Rational Mech.Anal, 52 (1973), 161-180.  doi: 10.1007/bf00282325.  Google Scholar

[7]

P. M. Fitzpatrick and J. Pejsachowicz, Parity and generilized multiplicity, Trans. Amer. Math. Soc., 326 (1991), 281-305.  doi: 10.2307/2001865.  Google Scholar

[8]

C. F. Gui and J. C. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differ. Equ, 158 (1999), 1-27.  doi: 10.1016/s0022-0396(99)80016-3.  Google Scholar

[9]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[10]

D. Horstmann, From 1970 untill present: the Keller-Segel model in chemotaxis, Jahresber DMV, 105 (2003), 103-165.   Google Scholar

[11]

D. Horstmann, From 1970 untill present: the Keller-Segel model in chemotaxis, Jahresber DMV, 106 (2004), 51-69.   Google Scholar

[12]

H. Y. JinY. J. Kim and Z. A. Wang, Boundedness, stabilization, and pattern forma-tion driven by density-suppressed motility, SIAM J. Appl. Math., 78(3) (2018), 1632-1657.  doi: 10.1137/17M1144647.  Google Scholar

[13]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[14]

E. Keller and L. Segel, Models for chemotaxis, Kinet. J. Theor. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[15]

H. C. Li, Spiky steady states of a chemotaxis system with singular sensitivity, J. Dyn. Differ. Equ., 30 (2018), 1775-1795.  doi: 10.1007/s10884-017-9621-3.  Google Scholar

[16]

C. S. LinW. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equ., 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[17]

M. Ma, R. Wang and Z. A. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Physica D, (2019). doi: 10.1016/j.physd.2019.132259.  Google Scholar

[18]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices. Amer. Math. Soc., 45 (1998), 9-18.   Google Scholar

[19]

W. M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke. Math. J., 70 (1993), 247-281.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[20]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM. J. Math. Anal. Vol., 57 (1997), 9-18.  doi: 10.1137/s0036139995288976.  Google Scholar

[21]

K. J. Painter and J. A. Sherratt, Modelling the movement of interacting cell populations, J. Theor. Biol., 225 (2003), 327-339.  doi: 10.1016/s0022-5193(03)00258-3.  Google Scholar

[22]

J. Pejsachowicz and P. J. Rabier, Degree theory for $C^1$ Fredholm mappings of index $0$, J. Anal. Math., 76 (1998), 289-319.  doi: 10.1007/BF02786939.  Google Scholar

[23]

A. B. Potapov and T. Hillen, Metastability in chemotaxis models, J. Dyn. Differ. Equ., 17 (2005), 293-330.  doi: 10.1007/s10884-005-2938-3.  Google Scholar

[24]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[25]

R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc, 292 (1985), 531-556.  doi: 10.2307/2000228.  Google Scholar

[26]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differ. Equ., 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[27]

B. SleemanM. Ward and J. C. Wei, The existence and stability of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 65 (2005), 790-817.  doi: 10.2307/4096197.  Google Scholar

[28]

J. Smith-RobergeD. Iron and T. Kolokolnikov, Pattern formation in bacterial colonies with density-dependent diffusion, Eur. J. Appl. Math., 30 (2019), 196-218.  doi: 10.1017/S0956792518000013.  Google Scholar

[29]

X. F Wang, Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics, SIAM. J. Math. Anal., 31 (2000), 535-560.  doi: 10.1137/S0036141098339897.  Google Scholar

[30]

Q. Wang, J. D. Yan and C. Y. Gai, Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth, Z. Angew. Math. Phys., 67 (2016). doi: 10.1007/s00033-016-0648-9.  Google Scholar

[31]

Q. Wang and X. F. Wang, Steady states and their qualitative properties of several classes of Keller-Segel models (in Chinese), Sci. Sin. Math., 49 (2019), 1911-1946.   Google Scholar

[32]

X. F Wang and Q. Xu, Spiky and transition layer steady state of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.  doi: 10.1007/s00285-012-0533-x.  Google Scholar

[33]

L. XinX. F. ChenM. X. WangC. Qin and Y. J. Zhang, Existence, uniqueness, and stability of bubble solutions of a chemotaxis model, Discrete Contin. Dyn. Syst., 36 (2016), 805-832.  doi: 10.3934/dcds.2016.36.805.  Google Scholar

[34]

Q. Xu, The Stability of Bifurcation Steady State of Serveral Classes of Chemotaxis Systems, Discrete Contin. Dyn. Syst. Ser. B., 20 (2015), 231-248.  doi: 10.3934/dcdsb.2015.20.231.  Google Scholar

[35]

C. Yoon and Y. J. Kim, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149 (2017), 101-123.  doi: 10.1007/s10440-016-0089-7.  Google Scholar

Figure 1.  On the horizontal axis is the average mass of chemical substance, which is $ v* $. On the vertical axis is the space of $ (u, v) $. Every point on the cure is a solution of (1.7). On the "upper", branch, the solutions are decreasing in $ \Omega $ and vice versa. $ \bar{v}_1^* $ is a positive constant and will be given in Section 2
Figure 2.  $ D = \alpha = \beta = 1 $, $ u^* = 20 $, $ l = 2 $. This figure shows the graph of $ u $ and $ v $ at time $ 200 $. The $ u $ curve is red and the $ v $ curve is blue
[1]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[2]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[3]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[4]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[5]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[6]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[7]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[8]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[9]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[10]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[11]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[12]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[13]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[16]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[17]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[18]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[19]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[20]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (108)
  • HTML views (95)
  • Cited by (0)

Other articles
by authors

[Back to Top]