
-
Previous Article
Asymptotic behavior of solutions for nonlinear integral equations with Hénon type on the unit Ball
- CPAA Home
- This Issue
-
Next Article
On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation
Existence of monotone positive solutions of a neighbour based chemotaxis model and aggregation phenomenon
Faculty of Science and Technology, University of Macau, Macau, China, co. Department of Mathematics, Southern University of Science and Technology, Shenzhen, 518055, China |
Using bifurcation theory, we prove the existence of spiky steady states and investigate the stability of bifurcating solutions of the one-dimensional continuous neighbour based chemotaxis model, in which the one-step jumping probability rate of cells is determined only by the chemoattractant concentration at the destination. These spiky steady states are crucial when we model cell aggregation, the most important phenomenon in chemotaxis.
References:
[1] |
J. Ahn and C. Yoon,
Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32(4) (2019), 1327-1351.
doi: 10.1088/1361-6544/aaf513. |
[2] |
H. B. Chen, T. Bo and Q. Wang,
Existence and stability of nonconstant positive steady states of morphogenesis models, Math. Meth. Appl. Sci., 38 (2015), 3833-3850.
doi: 10.1002/mma.3321. |
[3] |
X. F. Chen, J. H. Hao, X. F. Wang, Y. P. Wu and Y. J. Zhang,
Stability of spiky solution of Keller-Segel's minimal chemotaxis model, J. Differ. Equ., 257 (2014), 3102-3134.
doi: 10.1016/j.jde.2014.06.008. |
[4] |
A. Chertock, A. Kurganov, X. F. Wang and Y. P. Wu,
On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.
doi: 10.3934/krm.2012.5.51. |
[5] |
S. Childress and J. K. Percus,
Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 311-338.
doi: 10.1016/0025-5564(81)90055-9. |
[6] |
M. Crandall and P. Rabinowitz,
Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch.Rational Mech.Anal, 52 (1973), 161-180.
doi: 10.1007/bf00282325. |
[7] |
P. M. Fitzpatrick and J. Pejsachowicz,
Parity and generilized multiplicity, Trans. Amer. Math. Soc., 326 (1991), 281-305.
doi: 10.2307/2001865. |
[8] |
C. F. Gui and J. C. Wei,
Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differ. Equ, 158 (1999), 1-27.
doi: 10.1016/s0022-0396(99)80016-3. |
[9] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[10] |
D. Horstmann,
From 1970 untill present: the Keller-Segel model in chemotaxis, Jahresber DMV, 105 (2003), 103-165.
|
[11] |
D. Horstmann,
From 1970 untill present: the Keller-Segel model in chemotaxis, Jahresber DMV, 106 (2004), 51-69.
|
[12] |
H. Y. Jin, Y. J. Kim and Z. A. Wang,
Boundedness, stabilization, and pattern forma-tion driven by density-suppressed motility, SIAM J. Appl. Math., 78(3) (2018), 1632-1657.
doi: 10.1137/17M1144647. |
[13] |
E. Keller and L. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[14] |
E. Keller and L. Segel,
Models for chemotaxis, Kinet. J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[15] |
H. C. Li,
Spiky steady states of a chemotaxis system with singular sensitivity, J. Dyn. Differ. Equ., 30 (2018), 1775-1795.
doi: 10.1007/s10884-017-9621-3. |
[16] |
C. S. Lin, W. M. Ni and I. Takagi,
Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equ., 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[17] |
M. Ma, R. Wang and Z. A. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Physica D, (2019).
doi: 10.1016/j.physd.2019.132259. |
[18] |
W. M. Ni,
Diffusion, cross-diffusion, and their spike-layer steady states, Notices. Amer. Math. Soc., 45 (1998), 9-18.
|
[19] |
W. M. Ni and I. Takagi,
Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke. Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[20] |
H. G. Othmer and A. Stevens,
Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM. J. Math. Anal. Vol., 57 (1997), 9-18.
doi: 10.1137/s0036139995288976. |
[21] |
K. J. Painter and J. A. Sherratt,
Modelling the movement of interacting cell populations, J. Theor. Biol., 225 (2003), 327-339.
doi: 10.1016/s0022-5193(03)00258-3. |
[22] |
J. Pejsachowicz and P. J. Rabier,
Degree theory for $C^1$ Fredholm mappings of index $0$, J. Anal. Math., 76 (1998), 289-319.
doi: 10.1007/BF02786939. |
[23] |
A. B. Potapov and T. Hillen,
Metastability in chemotaxis models, J. Dyn. Differ. Equ., 17 (2005), 293-330.
doi: 10.1007/s10884-005-2938-3. |
[24] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[25] |
R. Schaaf,
Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc, 292 (1985), 531-556.
doi: 10.2307/2000228. |
[26] |
J. P. Shi and X. F. Wang,
On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differ. Equ., 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[27] |
B. Sleeman, M. Ward and J. C. Wei,
The existence and stability of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 65 (2005), 790-817.
doi: 10.2307/4096197. |
[28] |
J. Smith-Roberge, D. Iron and T. Kolokolnikov,
Pattern formation in bacterial colonies with density-dependent diffusion, Eur. J. Appl. Math., 30 (2019), 196-218.
doi: 10.1017/S0956792518000013. |
[29] |
X. F Wang,
Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics, SIAM. J. Math. Anal., 31 (2000), 535-560.
doi: 10.1137/S0036141098339897. |
[30] |
Q. Wang, J. D. Yan and C. Y. Gai, Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth, Z. Angew. Math. Phys., 67 (2016).
doi: 10.1007/s00033-016-0648-9. |
[31] |
Q. Wang and X. F. Wang, Steady states and their qualitative properties of several classes of Keller-Segel models (in Chinese), Sci. Sin. Math., 49 (2019), 1911-1946. Google Scholar |
[32] |
X. F Wang and Q. Xu,
Spiky and transition layer steady state of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.
doi: 10.1007/s00285-012-0533-x. |
[33] |
L. Xin, X. F. Chen, M. X. Wang, C. Qin and Y. J. Zhang,
Existence, uniqueness, and stability of bubble solutions of a chemotaxis model, Discrete Contin. Dyn. Syst., 36 (2016), 805-832.
doi: 10.3934/dcds.2016.36.805. |
[34] |
Q. Xu,
The Stability of Bifurcation Steady State of Serveral Classes of Chemotaxis Systems, Discrete Contin. Dyn. Syst. Ser. B., 20 (2015), 231-248.
doi: 10.3934/dcdsb.2015.20.231. |
[35] |
C. Yoon and Y. J. Kim,
Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149 (2017), 101-123.
doi: 10.1007/s10440-016-0089-7. |
show all references
References:
[1] |
J. Ahn and C. Yoon,
Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32(4) (2019), 1327-1351.
doi: 10.1088/1361-6544/aaf513. |
[2] |
H. B. Chen, T. Bo and Q. Wang,
Existence and stability of nonconstant positive steady states of morphogenesis models, Math. Meth. Appl. Sci., 38 (2015), 3833-3850.
doi: 10.1002/mma.3321. |
[3] |
X. F. Chen, J. H. Hao, X. F. Wang, Y. P. Wu and Y. J. Zhang,
Stability of spiky solution of Keller-Segel's minimal chemotaxis model, J. Differ. Equ., 257 (2014), 3102-3134.
doi: 10.1016/j.jde.2014.06.008. |
[4] |
A. Chertock, A. Kurganov, X. F. Wang and Y. P. Wu,
On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.
doi: 10.3934/krm.2012.5.51. |
[5] |
S. Childress and J. K. Percus,
Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 311-338.
doi: 10.1016/0025-5564(81)90055-9. |
[6] |
M. Crandall and P. Rabinowitz,
Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch.Rational Mech.Anal, 52 (1973), 161-180.
doi: 10.1007/bf00282325. |
[7] |
P. M. Fitzpatrick and J. Pejsachowicz,
Parity and generilized multiplicity, Trans. Amer. Math. Soc., 326 (1991), 281-305.
doi: 10.2307/2001865. |
[8] |
C. F. Gui and J. C. Wei,
Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differ. Equ, 158 (1999), 1-27.
doi: 10.1016/s0022-0396(99)80016-3. |
[9] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[10] |
D. Horstmann,
From 1970 untill present: the Keller-Segel model in chemotaxis, Jahresber DMV, 105 (2003), 103-165.
|
[11] |
D. Horstmann,
From 1970 untill present: the Keller-Segel model in chemotaxis, Jahresber DMV, 106 (2004), 51-69.
|
[12] |
H. Y. Jin, Y. J. Kim and Z. A. Wang,
Boundedness, stabilization, and pattern forma-tion driven by density-suppressed motility, SIAM J. Appl. Math., 78(3) (2018), 1632-1657.
doi: 10.1137/17M1144647. |
[13] |
E. Keller and L. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[14] |
E. Keller and L. Segel,
Models for chemotaxis, Kinet. J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[15] |
H. C. Li,
Spiky steady states of a chemotaxis system with singular sensitivity, J. Dyn. Differ. Equ., 30 (2018), 1775-1795.
doi: 10.1007/s10884-017-9621-3. |
[16] |
C. S. Lin, W. M. Ni and I. Takagi,
Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equ., 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[17] |
M. Ma, R. Wang and Z. A. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Physica D, (2019).
doi: 10.1016/j.physd.2019.132259. |
[18] |
W. M. Ni,
Diffusion, cross-diffusion, and their spike-layer steady states, Notices. Amer. Math. Soc., 45 (1998), 9-18.
|
[19] |
W. M. Ni and I. Takagi,
Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke. Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[20] |
H. G. Othmer and A. Stevens,
Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM. J. Math. Anal. Vol., 57 (1997), 9-18.
doi: 10.1137/s0036139995288976. |
[21] |
K. J. Painter and J. A. Sherratt,
Modelling the movement of interacting cell populations, J. Theor. Biol., 225 (2003), 327-339.
doi: 10.1016/s0022-5193(03)00258-3. |
[22] |
J. Pejsachowicz and P. J. Rabier,
Degree theory for $C^1$ Fredholm mappings of index $0$, J. Anal. Math., 76 (1998), 289-319.
doi: 10.1007/BF02786939. |
[23] |
A. B. Potapov and T. Hillen,
Metastability in chemotaxis models, J. Dyn. Differ. Equ., 17 (2005), 293-330.
doi: 10.1007/s10884-005-2938-3. |
[24] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[25] |
R. Schaaf,
Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc, 292 (1985), 531-556.
doi: 10.2307/2000228. |
[26] |
J. P. Shi and X. F. Wang,
On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differ. Equ., 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[27] |
B. Sleeman, M. Ward and J. C. Wei,
The existence and stability of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 65 (2005), 790-817.
doi: 10.2307/4096197. |
[28] |
J. Smith-Roberge, D. Iron and T. Kolokolnikov,
Pattern formation in bacterial colonies with density-dependent diffusion, Eur. J. Appl. Math., 30 (2019), 196-218.
doi: 10.1017/S0956792518000013. |
[29] |
X. F Wang,
Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics, SIAM. J. Math. Anal., 31 (2000), 535-560.
doi: 10.1137/S0036141098339897. |
[30] |
Q. Wang, J. D. Yan and C. Y. Gai, Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth, Z. Angew. Math. Phys., 67 (2016).
doi: 10.1007/s00033-016-0648-9. |
[31] |
Q. Wang and X. F. Wang, Steady states and their qualitative properties of several classes of Keller-Segel models (in Chinese), Sci. Sin. Math., 49 (2019), 1911-1946. Google Scholar |
[32] |
X. F Wang and Q. Xu,
Spiky and transition layer steady state of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.
doi: 10.1007/s00285-012-0533-x. |
[33] |
L. Xin, X. F. Chen, M. X. Wang, C. Qin and Y. J. Zhang,
Existence, uniqueness, and stability of bubble solutions of a chemotaxis model, Discrete Contin. Dyn. Syst., 36 (2016), 805-832.
doi: 10.3934/dcds.2016.36.805. |
[34] |
Q. Xu,
The Stability of Bifurcation Steady State of Serveral Classes of Chemotaxis Systems, Discrete Contin. Dyn. Syst. Ser. B., 20 (2015), 231-248.
doi: 10.3934/dcdsb.2015.20.231. |
[35] |
C. Yoon and Y. J. Kim,
Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149 (2017), 101-123.
doi: 10.1007/s10440-016-0089-7. |


[1] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[2] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[3] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[4] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[5] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[6] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[7] |
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 |
[8] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[9] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[10] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[11] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[12] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[13] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[14] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[15] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[16] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[17] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[18] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[19] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[20] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]