In this paper, we consider the problem
$ \begin{equation*} f^{q-1}(x) = \int_{\Omega}\frac{|x|^{\alpha}|y|^{\beta}f(y)}{|x-y|^{n-\gamma}}dy, \; f>0, \; x\in\overline{\Omega}, \end{equation*} $
where $ \Omega $ is the unit ball in $ \mathbb{R}^n(n\geq3) $ centered at the origin, $ 1<\gamma<n $ and $ \alpha, \beta>0 $, $ q_\gamma: = \frac{2n}{n+\gamma}<q<2 $. We will investigate the asymptotic behavior of energy maximizing positive solution as $ q\rightarrow (\frac{2n}{n+\gamma})^{+} = (q_\gamma)^+ $. We also show that the energy maximizing positive solution concentrate at a point, which is located at the boundary as $ q\rightarrow (q_\gamma)^{+} $. In addition, the energy maximizing positive solution is non-radial provided that $ q $ closes to $ q_\gamma $.
Citation: |
[1] |
J. Byeon and Z. Q. Wang, On the Hénon equation: Asymptotic profile of ground state I, Ann. Inst. Henri Poincare, 23 (2006), 803-828.
doi: 10.1016/j.anihpc.2006.04.001.![]() ![]() ![]() |
[2] |
J. Byeon and Z. Q. Wang, On the Hénon equation: Asymptotic profile of ground state II, J. Differ. Equ., 216 (2005), 78-108.
doi: 10.1016/j.jde.2005.02.018.![]() ![]() ![]() |
[3] |
Daomin Cao and Shuangjie Peng, The asymptotic behaviour of the ground state solution for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17.
doi: 10.1016/S0022-247X(02)00292-5.![]() ![]() ![]() |
[4] |
W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality, Proc. Amer. Math. Soc., 136 (2008), 955-962.
doi: 10.1090/S0002-9939-07-09232-5.![]() ![]() ![]() |
[5] |
J. Dou and M. Zhu, Nonlinear integral equations on bounded domains, J. Funct. Anal., 277 (2019), 111-134.
doi: 10.1016/j.jfa.2018.05.020.![]() ![]() ![]() |
[6] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.
![]() ![]() |
[7] |
Q. Q. Guo, Blow up analysis for integral equations on bouned domain, J. Differ. Equ., 266 (2019), 8258-8280.
doi: 10.1016/j.jde.2018.12.028.![]() ![]() ![]() |
[8] |
M. Hénon, Numerical experiments on the stability of spherical stellar systems, Astronomy Astrophys. Lib., 24 (1973), 229-238.
![]() |
[9] |
G. H. Hardy and J. E. Littlewood, On certain inequalities connected with the calculus of varations, J. Lond. Math. Soc., 5 (1930), 34-39.
doi: 10.1112/jlms/s1-5.1.34.![]() ![]() ![]() |
[10] |
G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals(1), Math. Z., 27 (1928), 565-606.
doi: 10.1007/BF01171116.![]() ![]() ![]() |
[11] |
E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.
doi: 10.2307/2007032.![]() ![]() ![]() |
[12] |
W. M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., 31 (1982), 801-807.
doi: 10.1512/iumj.1982.31.31056.![]() ![]() ![]() |
[13] |
D. Smets and M. Willem, Partial symmetry and asymptotic behavior for some elliptic variational problem, Calc. Var. Partial Differ. Equ., 18 (2003), 57-75.
doi: 10.1007/s00526-002-0180-y.![]() ![]() ![]() |
[14] |
D. Smets, J. B. Su and M. Willem, Non-radial ground states for the Henon equation, Commun. Contemp. Math., 4 (2002), 467-480.
doi: 10.1142/S0219199702000725.![]() ![]() ![]() |
[15] |
S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. (N. S.), 4 (1938), 471–479, Amer. Math. Soc. Transl. Ser., 34(1963), 39-68.
![]() |
[16] |
S. T. Zhang and Y. Z. Han, Extremal problem of Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds, preprint, arXiv: 1901.02309.
doi: 10.1016/j.jde.2015.06.032.![]() ![]() ![]() |