• Previous Article
    Hardy inequalities for the fractional powers of the Grushin operator
  • CPAA Home
  • This Issue
  • Next Article
    Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions
September  2020, 19(9): 4667-4697. doi: 10.3934/cpaa.2020197

Degenerate coercive quasilinear elliptic equations with subcritical or critical exponents in $ \mathbb{R}^N $

School of Mathematics, South China University of Technology, , Guangzhou 510640, China

*Corresponding author

Received  September 2019 Revised  March 2020 Published  June 2020

Fund Project: Supported by the Fundamental Research Funds for the Central Universities (No.2018MS59) and Natural Science Foundation of Guangdong (No.2018A0303130196)

We study the existence of positive solutions of the following degenerate coercive quasilinear elliptic equations:
$ \!-\text{div}(g^2(u)\nabla u)\!+\!\lambda g(u)g'(u)|\nabla u|^2\!+\!V(x)u\! = \!\beta u^{(1-\gamma)(2^*-1)}\!+\!f(u), \ x\!\in\! \mathbb{R}^N, $
where
$ g(t)\in C(\mathbb{R}, \mathbb{R}) $
,
$ V(x)\in C(\mathbb{R}^N, \mathbb{R}) $
,
$ \lambda, \gamma \in \mathbb{R} $
,
$ \beta\geq 0 $
and
$ 2^* = \frac{2N}{N-2} $
,
$ N\geq3 $
. The novelty of this paper is that
$ g(t) $
is non-increasing with respect to
$ |t| $
and
$ \lim_{|t|\rightarrow +\infty} g(t) = 0. $
The main results of this paper can be regarded as a supplement to the case that
$ g(t) $
is non-decreasing with respect to
$ |t| $
which has been extensively studied recently.
Citation: Yaotian Shen, Youjun Wang. Degenerate coercive quasilinear elliptic equations with subcritical or critical exponents in $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4667-4697. doi: 10.3934/cpaa.2020197
References:
[1]

C. O. AlvesY. J. Wang and Y. T. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differ. Equ., 259 (2015), 318-343.  doi: 10.1080/17476933.2015.1119818.  Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14(4) (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

D. ArcoyaL. Boccardo and L. Orsina, Existence of critical points for some noncoercive functionals, Ann. Inst. Henri Poincare Anal. Non Lineaire, 18 (2001), 437-457.  doi: 10.1016/S0294-1449(01)00069-5.  Google Scholar

[4]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations I, Arch. Ration. Mech. Anal., 82 (1983), 313-346.  doi: 10.1007/BF00250555.  Google Scholar

[5]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Commun. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[6]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach, Nonlinear Anal. Theory Meth. Appl., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[7]

Y. B. DengS. J. Peng and S. S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equ., 258 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[8]

Y. B. DengS. J. Peng and S. S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differ. Equ., 260 (2016), 1228-1262.  doi: 10.1016/j.jde.2015.09.021.  Google Scholar

[9]

G. di Blasio and F. Feo, A class of nonlinear degenerate elliptic equations related to the Gauss measure, J. Math. Anal. Appl., 386 (2012), 763-779.  doi: 10.1016/j.jmaa.2011.08.037.  Google Scholar

[10]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbb{R}^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[11]

P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part I and II, Ann. Inst. Henri Poincare Anal. Non Lineaire, (1984), 109–145,223–283.  Google Scholar

[12]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I, Proc. Amer. Math. Soc., 131 (2002), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[13]

J. Q. LiuY. QWa ng and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[14]

J. Marcos do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Commun. Pure Appl. Anal., 8 (2009), 621-644.  doi: 10.3934/cpaa.2009.8.621.  Google Scholar

[15]

A. Mercaldo and I. Peral, Existence results for semilinear elliptic equations with some lack of coercivity, Proc. R. Soc. Edinb., 138 (2008), 569-595.  doi: 10.1017/S0308210506000126.  Google Scholar

[16]

A. MercaldoI. Peral and A. Primo, Results for degenerate nonlinear elliptic equations involving a Hardy potential, J. Differ. Equ., 251 (2011), 3114-3142.  doi: 10.1016/j.jde.2011.07.024.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.  Google Scholar

[18]

Y. T. Shen and X. K. Guo, The positive solution of degenerate variational problem and degenerate elliptic equation, Chin. J. Contemp. Math., 14 (1993), 157-165.   Google Scholar

[19]

Y. T. Shen and Y. J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. Theory Meth. Appl., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[20]

Y. T. Shen and Y. J. Wang, A class of generalized quasilinear Schrödinger equations, Commun. Pure Appl. Anal., 15 (2016), 853-870.  doi: 10.3934/cpaa.2016.15.853.  Google Scholar

[21]

Y. T. Shen and Y. J. Wang, Standing waves for a class of quasilinear Schrödinger equations, Complex Var. Elliptic Equ., 61 (2016), 817-842.  doi: 10.1080/17476933.2015.1119818.  Google Scholar

[22]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var., 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1.  Google Scholar

[23]

W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162.   Google Scholar

[24]

M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 2008.  Google Scholar

show all references

References:
[1]

C. O. AlvesY. J. Wang and Y. T. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differ. Equ., 259 (2015), 318-343.  doi: 10.1080/17476933.2015.1119818.  Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14(4) (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

D. ArcoyaL. Boccardo and L. Orsina, Existence of critical points for some noncoercive functionals, Ann. Inst. Henri Poincare Anal. Non Lineaire, 18 (2001), 437-457.  doi: 10.1016/S0294-1449(01)00069-5.  Google Scholar

[4]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations I, Arch. Ration. Mech. Anal., 82 (1983), 313-346.  doi: 10.1007/BF00250555.  Google Scholar

[5]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Commun. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[6]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach, Nonlinear Anal. Theory Meth. Appl., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[7]

Y. B. DengS. J. Peng and S. S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equ., 258 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[8]

Y. B. DengS. J. Peng and S. S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differ. Equ., 260 (2016), 1228-1262.  doi: 10.1016/j.jde.2015.09.021.  Google Scholar

[9]

G. di Blasio and F. Feo, A class of nonlinear degenerate elliptic equations related to the Gauss measure, J. Math. Anal. Appl., 386 (2012), 763-779.  doi: 10.1016/j.jmaa.2011.08.037.  Google Scholar

[10]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbb{R}^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[11]

P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part I and II, Ann. Inst. Henri Poincare Anal. Non Lineaire, (1984), 109–145,223–283.  Google Scholar

[12]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I, Proc. Amer. Math. Soc., 131 (2002), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[13]

J. Q. LiuY. QWa ng and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[14]

J. Marcos do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Commun. Pure Appl. Anal., 8 (2009), 621-644.  doi: 10.3934/cpaa.2009.8.621.  Google Scholar

[15]

A. Mercaldo and I. Peral, Existence results for semilinear elliptic equations with some lack of coercivity, Proc. R. Soc. Edinb., 138 (2008), 569-595.  doi: 10.1017/S0308210506000126.  Google Scholar

[16]

A. MercaldoI. Peral and A. Primo, Results for degenerate nonlinear elliptic equations involving a Hardy potential, J. Differ. Equ., 251 (2011), 3114-3142.  doi: 10.1016/j.jde.2011.07.024.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.  Google Scholar

[18]

Y. T. Shen and X. K. Guo, The positive solution of degenerate variational problem and degenerate elliptic equation, Chin. J. Contemp. Math., 14 (1993), 157-165.   Google Scholar

[19]

Y. T. Shen and Y. J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. Theory Meth. Appl., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[20]

Y. T. Shen and Y. J. Wang, A class of generalized quasilinear Schrödinger equations, Commun. Pure Appl. Anal., 15 (2016), 853-870.  doi: 10.3934/cpaa.2016.15.853.  Google Scholar

[21]

Y. T. Shen and Y. J. Wang, Standing waves for a class of quasilinear Schrödinger equations, Complex Var. Elliptic Equ., 61 (2016), 817-842.  doi: 10.1080/17476933.2015.1119818.  Google Scholar

[22]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var., 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1.  Google Scholar

[23]

W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162.   Google Scholar

[24]

M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 2008.  Google Scholar

[1]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[4]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297

[7]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[8]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[9]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[10]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[13]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[14]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[15]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[16]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[18]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (93)
  • HTML views (83)
  • Cited by (0)

Other articles
by authors

[Back to Top]