-
Previous Article
Maximum principles for a fully nonlinear nonlocal equation on unbounded domains
- CPAA Home
- This Issue
-
Next Article
Monotonicity with respect to $ p $ of the First Nontrivial Eigenvalue of the $ p $-Laplacian with Homogeneous Neumann Boundary Conditions
Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations
1. | Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan |
2. | Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan |
$ u $ |
$ \begin{equation*} \begin{cases} \partial_t u = \mathrm{div}\, (|\nabla u|^{p-2} \nabla u) + u^\alpha & \quad\mathrm{in}\quad{\bf R}^N\times(0, \infty), \\ u(x, 0) = \lambda+\varphi(x) & \quad\mathrm{in}\quad{\bf R}^N, \end{cases} \end{equation*} $ |
$ N \ge 1 $ |
$ 2N/(N+1)<p\neq2 $ |
$ \alpha \in (-\infty, 1) $ |
$ \lambda>0 $ |
$ \varphi\in BC({\bf R}^N)\, \cap\, L^1({\bf R}^N) $ |
$ \varphi\geq0 $ |
$ {\bf R}^{N} $ |
$ u $ |
$ \zeta' = \zeta^\alpha $ |
$ (0, \infty) $ |
$ u $ |
References:
[1] |
E. DiBenedetto and A. Friedman,
Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357 (1985), 1-22.
doi: 10.1515/crll.1985.357.1. |
[2] |
E. DiBenedetto and A. Friedman,
Addendum to Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 363 (1985), 217-220.
doi: 10.1515/crll.1985.363.217. |
[3] |
E. DiBenedetto and M. A. Herrero,
On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1989), 187-224.
doi: 10.2307/2001442. |
[4] |
E. DiBenedetto and M. A. Herrero,
Nonnegative solutions of the evolution $p$-Laplacian equation. Initial traces and Cauchy problem when $1 < p < 2$, Arch. Ration. Mech. Anal., 111 (1990), 225-290.
doi: 10.1007/BF00400111. |
[5] |
J. Eom and K. Ishige, Large time behavior of ODE type solutions to a nonlinear parabolic system, Nonlinear Anal., 191 (2020), 19 pp.
doi: 10.1016/j.na.2019.111631. |
[6] |
J. Eom and K. Ishige, Large time behavior of ODE type solutions to nonlinear diffusion equations, Discrete Contin. Dyn. Syst., to appear. Google Scholar |
[7] |
A. Friedman and S. Kamin,
The asymptotic behavior of gas in an $n$-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563.
doi: 10.2307/1999846. |
[8] |
A. Gmira and L. Veron,
Large time behaviour of the solutions of a semilinear parabolic equation in $\mathbf{R}^{N}$, J. Differ. Equ., 53 (1984), 258-276.
doi: 10.1016/0022-0396(84)90042-1. |
[9] |
M. A. Herrero and J. L. Vázquez,
Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulouse Math., 3 (1981), 113-127.
|
[10] |
K. Ishige and K. Kobayashi,
Convection-diffusion equation with absorption and non-decaying initial data, J. Differ. Equ., 254 (2013), 1247-1268.
doi: 10.1016/j.jde.2012.10.014. |
[11] |
S. Kamin,
The asymptotic behavior of the solution of the filtration equation, Israel J. Math., 14 (1973), 76-87.
doi: 10.1007/BF02761536. |
[12] |
S. Kamin and L. A. Peletier,
Large time behaviour of solutions of the heat equation with absorption, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 12 (1985), 393-408.
|
[13] |
S. Kamin and L. A. Peletier,
Large time behaviour of solutions of the porous media equation with absorption, Israel J. Math., 55 (1986), 129-146.
doi: 10.1007/BF02801989. |
[14] |
S. Kamin and J. L. Vázquez,
Fundamental solutions and asymptotic behaviour for the $p$- Laplacian equation, Rev. Mat. Iberoam., 4 (1988), 339-354.
doi: 10.4171/RMI/77. |
[15] |
L. A. Peletier and J. N. Zhao,
Source-type solutions of the porous media equation with absorption: the fast diffusion case, Nonlinear Anal., 14 (1990), 107-121.
doi: 10.1016/0362-546X(90)90018-C. |
[16] |
J. N. Zhao,
The asymptotic behaviour of solutions of a quasilinear degenerate parabolic equation, J. Differ. Equ., 102 (1993), 33-52.
doi: 10.1006/jdeq.1993.1020. |
show all references
References:
[1] |
E. DiBenedetto and A. Friedman,
Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357 (1985), 1-22.
doi: 10.1515/crll.1985.357.1. |
[2] |
E. DiBenedetto and A. Friedman,
Addendum to Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 363 (1985), 217-220.
doi: 10.1515/crll.1985.363.217. |
[3] |
E. DiBenedetto and M. A. Herrero,
On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1989), 187-224.
doi: 10.2307/2001442. |
[4] |
E. DiBenedetto and M. A. Herrero,
Nonnegative solutions of the evolution $p$-Laplacian equation. Initial traces and Cauchy problem when $1 < p < 2$, Arch. Ration. Mech. Anal., 111 (1990), 225-290.
doi: 10.1007/BF00400111. |
[5] |
J. Eom and K. Ishige, Large time behavior of ODE type solutions to a nonlinear parabolic system, Nonlinear Anal., 191 (2020), 19 pp.
doi: 10.1016/j.na.2019.111631. |
[6] |
J. Eom and K. Ishige, Large time behavior of ODE type solutions to nonlinear diffusion equations, Discrete Contin. Dyn. Syst., to appear. Google Scholar |
[7] |
A. Friedman and S. Kamin,
The asymptotic behavior of gas in an $n$-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563.
doi: 10.2307/1999846. |
[8] |
A. Gmira and L. Veron,
Large time behaviour of the solutions of a semilinear parabolic equation in $\mathbf{R}^{N}$, J. Differ. Equ., 53 (1984), 258-276.
doi: 10.1016/0022-0396(84)90042-1. |
[9] |
M. A. Herrero and J. L. Vázquez,
Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulouse Math., 3 (1981), 113-127.
|
[10] |
K. Ishige and K. Kobayashi,
Convection-diffusion equation with absorption and non-decaying initial data, J. Differ. Equ., 254 (2013), 1247-1268.
doi: 10.1016/j.jde.2012.10.014. |
[11] |
S. Kamin,
The asymptotic behavior of the solution of the filtration equation, Israel J. Math., 14 (1973), 76-87.
doi: 10.1007/BF02761536. |
[12] |
S. Kamin and L. A. Peletier,
Large time behaviour of solutions of the heat equation with absorption, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 12 (1985), 393-408.
|
[13] |
S. Kamin and L. A. Peletier,
Large time behaviour of solutions of the porous media equation with absorption, Israel J. Math., 55 (1986), 129-146.
doi: 10.1007/BF02801989. |
[14] |
S. Kamin and J. L. Vázquez,
Fundamental solutions and asymptotic behaviour for the $p$- Laplacian equation, Rev. Mat. Iberoam., 4 (1988), 339-354.
doi: 10.4171/RMI/77. |
[15] |
L. A. Peletier and J. N. Zhao,
Source-type solutions of the porous media equation with absorption: the fast diffusion case, Nonlinear Anal., 14 (1990), 107-121.
doi: 10.1016/0362-546X(90)90018-C. |
[16] |
J. N. Zhao,
The asymptotic behaviour of solutions of a quasilinear degenerate parabolic equation, J. Differ. Equ., 102 (1993), 33-52.
doi: 10.1006/jdeq.1993.1020. |
[1] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[2] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[3] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[4] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[5] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[6] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[7] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[8] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[9] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[10] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[11] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[12] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[13] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[14] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[15] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[16] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[17] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[18] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[19] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[20] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]