-
Previous Article
Maximum principles for a fully nonlinear nonlocal equation on unbounded domains
- CPAA Home
- This Issue
-
Next Article
Monotonicity with respect to $ p $ of the First Nontrivial Eigenvalue of the $ p $-Laplacian with Homogeneous Neumann Boundary Conditions
Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations
1. | Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan |
2. | Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan |
$ u $ |
$ \begin{equation*} \begin{cases} \partial_t u = \mathrm{div}\, (|\nabla u|^{p-2} \nabla u) + u^\alpha & \quad\mathrm{in}\quad{\bf R}^N\times(0, \infty), \\ u(x, 0) = \lambda+\varphi(x) & \quad\mathrm{in}\quad{\bf R}^N, \end{cases} \end{equation*} $ |
$ N \ge 1 $ |
$ 2N/(N+1)<p\neq2 $ |
$ \alpha \in (-\infty, 1) $ |
$ \lambda>0 $ |
$ \varphi\in BC({\bf R}^N)\, \cap\, L^1({\bf R}^N) $ |
$ \varphi\geq0 $ |
$ {\bf R}^{N} $ |
$ u $ |
$ \zeta' = \zeta^\alpha $ |
$ (0, \infty) $ |
$ u $ |
References:
[1] |
E. DiBenedetto and A. Friedman,
Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357 (1985), 1-22.
doi: 10.1515/crll.1985.357.1. |
[2] |
E. DiBenedetto and A. Friedman,
Addendum to Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 363 (1985), 217-220.
doi: 10.1515/crll.1985.363.217. |
[3] |
E. DiBenedetto and M. A. Herrero,
On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1989), 187-224.
doi: 10.2307/2001442. |
[4] |
E. DiBenedetto and M. A. Herrero,
Nonnegative solutions of the evolution $p$-Laplacian equation. Initial traces and Cauchy problem when $1 < p < 2$, Arch. Ration. Mech. Anal., 111 (1990), 225-290.
doi: 10.1007/BF00400111. |
[5] |
J. Eom and K. Ishige, Large time behavior of ODE type solutions to a nonlinear parabolic system, Nonlinear Anal., 191 (2020), 19 pp.
doi: 10.1016/j.na.2019.111631. |
[6] |
J. Eom and K. Ishige, Large time behavior of ODE type solutions to nonlinear diffusion equations, Discrete Contin. Dyn. Syst., to appear. |
[7] |
A. Friedman and S. Kamin,
The asymptotic behavior of gas in an $n$-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563.
doi: 10.2307/1999846. |
[8] |
A. Gmira and L. Veron,
Large time behaviour of the solutions of a semilinear parabolic equation in $\mathbf{R}^{N}$, J. Differ. Equ., 53 (1984), 258-276.
doi: 10.1016/0022-0396(84)90042-1. |
[9] |
M. A. Herrero and J. L. Vázquez,
Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulouse Math., 3 (1981), 113-127.
|
[10] |
K. Ishige and K. Kobayashi,
Convection-diffusion equation with absorption and non-decaying initial data, J. Differ. Equ., 254 (2013), 1247-1268.
doi: 10.1016/j.jde.2012.10.014. |
[11] |
S. Kamin,
The asymptotic behavior of the solution of the filtration equation, Israel J. Math., 14 (1973), 76-87.
doi: 10.1007/BF02761536. |
[12] |
S. Kamin and L. A. Peletier,
Large time behaviour of solutions of the heat equation with absorption, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 12 (1985), 393-408.
|
[13] |
S. Kamin and L. A. Peletier,
Large time behaviour of solutions of the porous media equation with absorption, Israel J. Math., 55 (1986), 129-146.
doi: 10.1007/BF02801989. |
[14] |
S. Kamin and J. L. Vázquez,
Fundamental solutions and asymptotic behaviour for the $p$- Laplacian equation, Rev. Mat. Iberoam., 4 (1988), 339-354.
doi: 10.4171/RMI/77. |
[15] |
L. A. Peletier and J. N. Zhao,
Source-type solutions of the porous media equation with absorption: the fast diffusion case, Nonlinear Anal., 14 (1990), 107-121.
doi: 10.1016/0362-546X(90)90018-C. |
[16] |
J. N. Zhao,
The asymptotic behaviour of solutions of a quasilinear degenerate parabolic equation, J. Differ. Equ., 102 (1993), 33-52.
doi: 10.1006/jdeq.1993.1020. |
show all references
References:
[1] |
E. DiBenedetto and A. Friedman,
Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357 (1985), 1-22.
doi: 10.1515/crll.1985.357.1. |
[2] |
E. DiBenedetto and A. Friedman,
Addendum to Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 363 (1985), 217-220.
doi: 10.1515/crll.1985.363.217. |
[3] |
E. DiBenedetto and M. A. Herrero,
On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1989), 187-224.
doi: 10.2307/2001442. |
[4] |
E. DiBenedetto and M. A. Herrero,
Nonnegative solutions of the evolution $p$-Laplacian equation. Initial traces and Cauchy problem when $1 < p < 2$, Arch. Ration. Mech. Anal., 111 (1990), 225-290.
doi: 10.1007/BF00400111. |
[5] |
J. Eom and K. Ishige, Large time behavior of ODE type solutions to a nonlinear parabolic system, Nonlinear Anal., 191 (2020), 19 pp.
doi: 10.1016/j.na.2019.111631. |
[6] |
J. Eom and K. Ishige, Large time behavior of ODE type solutions to nonlinear diffusion equations, Discrete Contin. Dyn. Syst., to appear. |
[7] |
A. Friedman and S. Kamin,
The asymptotic behavior of gas in an $n$-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563.
doi: 10.2307/1999846. |
[8] |
A. Gmira and L. Veron,
Large time behaviour of the solutions of a semilinear parabolic equation in $\mathbf{R}^{N}$, J. Differ. Equ., 53 (1984), 258-276.
doi: 10.1016/0022-0396(84)90042-1. |
[9] |
M. A. Herrero and J. L. Vázquez,
Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulouse Math., 3 (1981), 113-127.
|
[10] |
K. Ishige and K. Kobayashi,
Convection-diffusion equation with absorption and non-decaying initial data, J. Differ. Equ., 254 (2013), 1247-1268.
doi: 10.1016/j.jde.2012.10.014. |
[11] |
S. Kamin,
The asymptotic behavior of the solution of the filtration equation, Israel J. Math., 14 (1973), 76-87.
doi: 10.1007/BF02761536. |
[12] |
S. Kamin and L. A. Peletier,
Large time behaviour of solutions of the heat equation with absorption, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 12 (1985), 393-408.
|
[13] |
S. Kamin and L. A. Peletier,
Large time behaviour of solutions of the porous media equation with absorption, Israel J. Math., 55 (1986), 129-146.
doi: 10.1007/BF02801989. |
[14] |
S. Kamin and J. L. Vázquez,
Fundamental solutions and asymptotic behaviour for the $p$- Laplacian equation, Rev. Mat. Iberoam., 4 (1988), 339-354.
doi: 10.4171/RMI/77. |
[15] |
L. A. Peletier and J. N. Zhao,
Source-type solutions of the porous media equation with absorption: the fast diffusion case, Nonlinear Anal., 14 (1990), 107-121.
doi: 10.1016/0362-546X(90)90018-C. |
[16] |
J. N. Zhao,
The asymptotic behaviour of solutions of a quasilinear degenerate parabolic equation, J. Differ. Equ., 102 (1993), 33-52.
doi: 10.1006/jdeq.1993.1020. |
[1] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[2] |
Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683 |
[3] |
Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations and Control Theory, 2022, 11 (3) : 975-1000. doi: 10.3934/eect.2021033 |
[4] |
Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 |
[5] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[6] |
Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41 |
[7] |
Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93 |
[8] |
Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22 |
[9] |
Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171 |
[10] |
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 |
[11] |
Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 |
[12] |
Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 |
[13] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations and Control Theory, 2022, 11 (2) : 399-414. doi: 10.3934/eect.2021005 |
[14] |
Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581 |
[15] |
Philippe Laurençot, Christoph Walker. The fragmentation equation with size diffusion: Small and large size behavior of stationary solutions. Kinetic and Related Models, 2021, 14 (6) : 961-980. doi: 10.3934/krm.2021032 |
[16] |
Takanobu Okazaki. Large time behaviour of solutions of nonlinear ode describing hysteresis. Conference Publications, 2007, 2007 (Special) : 804-813. doi: 10.3934/proc.2007.2007.804 |
[17] |
Kazuhiro Ishige, Asato Mukai. Large time behavior of solutions of the heat equation with inverse square potential. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4041-4069. doi: 10.3934/dcds.2018176 |
[18] |
Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure and Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475 |
[19] |
Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767 |
[20] |
Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]