In this paper, we study equations involving fully nonlinear nonlocal operators
$ \mathcal {F}_{\alpha}(u(x)) = C_{n, \alpha}P.V.\int_{ \mathbb R^n}\frac{G(u(x)-u(z))}{|x-z|^{n+\alpha}}dz = f(u(x)), \; \; \; x\in \mathbb R^n. $
We shall establish a maximum principle for anti-symmetric functions on any half space, and obtain key ingredients for proving the symmetry and monotonicity for positive solutions to the fully nonlinear nonlocal equations. Especially, a Liouville theorem is derived, which will be useful in carrying out the method of moving planes on unbounded domains for a variety of problems with fully nonlinear nonlocal operators.
Citation: |
[1] |
F. Andreu, J. Mazon, J. Rossi and J. Toledo, Nonlocal Diffusion Problems, Vol. 165, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/surv/165.![]() ![]() ![]() |
[2] |
D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
![]() ![]() |
[3] |
C. Bjorland, L. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Commun. Pure Appl. Math., 65 (2012), 337-380.
doi: 10.1002/cpa.21379.![]() ![]() ![]() |
[4] |
K. Bogdan, T. Kulczycki and A. Nowak, gradient estimates for harmonic and $q$-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556.
![]() ![]() |
[5] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Patial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[6] |
L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-diffenrential equations, Commun. Pure Appl. Math., 62 (2009), 597-638.
doi: 10.1002/cpa.20274.![]() ![]() ![]() |
[7] |
W. Chen, L. D. D'Ambrosio and Y. Li, Some Liouville theorems for the fractional Laplacian, Nonlinear Anal. Theory Meth. Appl., 121 (2015), 370-381.
doi: 10.1016/j.na.2014.11.003.![]() ![]() ![]() |
[8] |
W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016.![]() ![]() ![]() |
[9] |
W. Chen, C. Li and G. Li, Maximum priciple for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differ. Equ., 56 (2017), 29 pp.
doi: 10.1007/s00526-017-1110-3.![]() ![]() ![]() |
[10] |
W. Chen, C. Li and Y. Li, A drirect method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
[11] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[12] |
W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.
doi: 10.3934/dcds.2005.12.347.![]() ![]() ![]() |
[13] |
W. Chen and L. Wu, A maximum principle on unbounded domains and a Liouville theorem for fractional $p$-harmonic functions, preprint, arXiv: 1905.09986.
![]() |
[14] |
W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equ., 260 (2016), 4758-4785.
doi: 10.1016/j.jde.2015.11.029.![]() ![]() ![]() |
[15] |
T. Cheng, Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017), 3587-3599.
doi: 10.3934/dcds.2017154.![]() ![]() ![]() |
[16] |
T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math., 19 (2017), Art. 1750018.
doi: 10.1142/S0219199717500183.![]() ![]() ![]() |
[17] |
E. De Giorgi, Convergence problems for functionals and operators, in Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, Pitagora, (1979), 131–188.
![]() ![]() |
[18] |
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., 6 (1981), 883-901.
doi: 10.1080/03605308108820196.![]() ![]() ![]() |
[19] |
X. Han, G. Lu and J. Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differ. Equ., 252 (2012), 1589-1602.
doi: 10.1016/j.jde.2011.07.037.![]() ![]() ![]() |
[20] |
C. Kenig and W. Ni, An exterior Dirichlet problem with applications to some nonlinear equations arising in geometry, Amer. J. Math., 106 (1984), 689-702.
doi: 10.2307/2374291.![]() ![]() ![]() |
[21] |
L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859.
doi: 10.3934/cpaa.2006.5.855.![]() ![]() ![]() |
[22] |
P. Polacik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part Ⅰ: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8.![]() ![]() ![]() |
[23] |
P. Wang and P. Niu, A direct method of moving planes for a fully nonlinear nonlocal system, Commun. Pure Appl. Anal., 16 (2017), 1707-1718.
doi: 10.3934/cpaa.2017082.![]() ![]() ![]() |
[24] |
R. Zhuo, W. Chen, X. Cui and Z. Yuan, Symmetry and nonexistence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.
doi: 10.3934/dcds.2016.36.1125.![]() ![]() ![]() |