• Previous Article
    Ground and bound state solutions for quasilinear elliptic systems including singular nonlinearities and indefinite potentials
  • CPAA Home
  • This Issue
  • Next Article
    Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations
September  2020, 19(9): 4387-4399. doi: 10.3934/cpaa.2020200

Maximum principles for a fully nonlinear nonlocal equation on unbounded domains

1. 

School of Science, Minzu University of China, Beijing 100081, China

2. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

*The corresponding author

Received  October 2019 Revised  March 2020 Published  June 2020

Fund Project: X. He was supported by NSFC Grants (11771468, 11971027, 11271386), and W. Zou by NSFC Grants (11771234, 11926323, 11371212)

In this paper, we study equations involving fully nonlinear nonlocal operators
$ \mathcal {F}_{\alpha}(u(x)) = C_{n, \alpha}P.V.\int_{ \mathbb R^n}\frac{G(u(x)-u(z))}{|x-z|^{n+\alpha}}dz = f(u(x)), \; \; \; x\in \mathbb R^n. $
We shall establish a maximum principle for anti-symmetric functions on any half space, and obtain key ingredients for proving the symmetry and monotonicity for positive solutions to the fully nonlinear nonlocal equations. Especially, a Liouville theorem is derived, which will be useful in carrying out the method of moving planes on unbounded domains for a variety of problems with fully nonlinear nonlocal operators.
Citation: Xiaoming He, Xin Zhao, Wenming Zou. Maximum principles for a fully nonlinear nonlocal equation on unbounded domains. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4387-4399. doi: 10.3934/cpaa.2020200
References:
[1]

F. Andreu, J. Mazon, J. Rossi and J. Toledo, Nonlocal Diffusion Problems, Vol. 165, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[3]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Commun. Pure Appl. Math., 65 (2012), 337-380.  doi: 10.1002/cpa.21379.  Google Scholar

[4]

K. BogdanT. Kulczycki and A. Nowak, gradient estimates for harmonic and $q$-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556.   Google Scholar

[5]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Patial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[6]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-diffenrential equations, Commun. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar

[7]

W. ChenL. D. D'Ambrosio and Y. Li, Some Liouville theorems for the fractional Laplacian, Nonlinear Anal. Theory Meth. Appl., 121 (2015), 370-381.  doi: 10.1016/j.na.2014.11.003.  Google Scholar

[8]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[9]

W. Chen, C. Li and G. Li, Maximum priciple for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differ. Equ., 56 (2017), 29 pp. doi: 10.1007/s00526-017-1110-3.  Google Scholar

[10]

W. ChenC. Li and Y. Li, A drirect method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[11]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[12]

W. ChenC. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.  doi: 10.3934/dcds.2005.12.347.  Google Scholar

[13]

W. Chen and L. Wu, A maximum principle on unbounded domains and a Liouville theorem for fractional $p$-harmonic functions, preprint, arXiv: 1905.09986. Google Scholar

[14]

W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equ., 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar

[15]

T. Cheng, Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017), 3587-3599.  doi: 10.3934/dcds.2017154.  Google Scholar

[16]

T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math., 19 (2017), Art. 1750018. doi: 10.1142/S0219199717500183.  Google Scholar

[17]

E. De Giorgi, Convergence problems for functionals and operators, in Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, Pitagora, (1979), 131–188.  Google Scholar

[18]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., 6 (1981), 883-901.  doi: 10.1080/03605308108820196.  Google Scholar

[19]

X. HanG. Lu and J. Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differ. Equ., 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.  Google Scholar

[20]

C. Kenig and W. Ni, An exterior Dirichlet problem with applications to some nonlinear equations arising in geometry, Amer. J. Math., 106 (1984), 689-702.  doi: 10.2307/2374291.  Google Scholar

[21]

L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[22]

P. PolacikP. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part Ⅰ: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[23]

P. Wang and P. Niu, A direct method of moving planes for a fully nonlinear nonlocal system, Commun. Pure Appl. Anal., 16 (2017), 1707-1718.  doi: 10.3934/cpaa.2017082.  Google Scholar

[24]

R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and nonexistence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.  Google Scholar

show all references

References:
[1]

F. Andreu, J. Mazon, J. Rossi and J. Toledo, Nonlocal Diffusion Problems, Vol. 165, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[3]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Commun. Pure Appl. Math., 65 (2012), 337-380.  doi: 10.1002/cpa.21379.  Google Scholar

[4]

K. BogdanT. Kulczycki and A. Nowak, gradient estimates for harmonic and $q$-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556.   Google Scholar

[5]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Patial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[6]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-diffenrential equations, Commun. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar

[7]

W. ChenL. D. D'Ambrosio and Y. Li, Some Liouville theorems for the fractional Laplacian, Nonlinear Anal. Theory Meth. Appl., 121 (2015), 370-381.  doi: 10.1016/j.na.2014.11.003.  Google Scholar

[8]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[9]

W. Chen, C. Li and G. Li, Maximum priciple for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differ. Equ., 56 (2017), 29 pp. doi: 10.1007/s00526-017-1110-3.  Google Scholar

[10]

W. ChenC. Li and Y. Li, A drirect method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[11]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[12]

W. ChenC. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.  doi: 10.3934/dcds.2005.12.347.  Google Scholar

[13]

W. Chen and L. Wu, A maximum principle on unbounded domains and a Liouville theorem for fractional $p$-harmonic functions, preprint, arXiv: 1905.09986. Google Scholar

[14]

W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equ., 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar

[15]

T. Cheng, Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017), 3587-3599.  doi: 10.3934/dcds.2017154.  Google Scholar

[16]

T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math., 19 (2017), Art. 1750018. doi: 10.1142/S0219199717500183.  Google Scholar

[17]

E. De Giorgi, Convergence problems for functionals and operators, in Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, Pitagora, (1979), 131–188.  Google Scholar

[18]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., 6 (1981), 883-901.  doi: 10.1080/03605308108820196.  Google Scholar

[19]

X. HanG. Lu and J. Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differ. Equ., 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.  Google Scholar

[20]

C. Kenig and W. Ni, An exterior Dirichlet problem with applications to some nonlinear equations arising in geometry, Amer. J. Math., 106 (1984), 689-702.  doi: 10.2307/2374291.  Google Scholar

[21]

L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[22]

P. PolacikP. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part Ⅰ: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[23]

P. Wang and P. Niu, A direct method of moving planes for a fully nonlinear nonlocal system, Commun. Pure Appl. Anal., 16 (2017), 1707-1718.  doi: 10.3934/cpaa.2017082.  Google Scholar

[24]

R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and nonexistence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.  Google Scholar

[1]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[2]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[3]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[4]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[5]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[6]

Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813

[7]

Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006

[8]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[9]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations & Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

[10]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[11]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[12]

Meng Qu, Ping Li, Liu Yang. Symmetry and monotonicity of solutions for the fully nonlinear nonlocal equation. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1337-1349. doi: 10.3934/cpaa.2020065

[13]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[14]

Chuanqiang Chen. On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4761-4811. doi: 10.3934/dcds.2016007

[15]

Chuanqiang Chen. On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3383-3402. doi: 10.3934/dcds.2014.34.3383

[16]

Xiaohui Yu. Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros. Communications on Pure & Applied Analysis, 2013, 12 (1) : 451-459. doi: 10.3934/cpaa.2013.12.451

[17]

Claude-Michel Brauner, Josephus Hulshof, Luca Lorenzi, Gregory I. Sivashinsky. A fully nonlinear equation for the flame front in a quasi-steady combustion model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1415-1446. doi: 10.3934/dcds.2010.27.1415

[18]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[19]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[20]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (82)
  • HTML views (79)
  • Cited by (0)

Other articles
by authors

[Back to Top]