\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Maximum principles for a fully nonlinear nonlocal equation on unbounded domains

  • *The corresponding author

    *The corresponding author 

X. He was supported by NSFC Grants (11771468, 11971027, 11271386), and W. Zou by NSFC Grants (11771234, 11926323, 11371212)

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we study equations involving fully nonlinear nonlocal operators

    $ \mathcal {F}_{\alpha}(u(x)) = C_{n, \alpha}P.V.\int_{ \mathbb R^n}\frac{G(u(x)-u(z))}{|x-z|^{n+\alpha}}dz = f(u(x)), \; \; \; x\in \mathbb R^n. $

    We shall establish a maximum principle for anti-symmetric functions on any half space, and obtain key ingredients for proving the symmetry and monotonicity for positive solutions to the fully nonlinear nonlocal equations. Especially, a Liouville theorem is derived, which will be useful in carrying out the method of moving planes on unbounded domains for a variety of problems with fully nonlinear nonlocal operators.

    Mathematics Subject Classification: Primary: 35J60; 35J20; Secondary: 35R11; 35S15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. Andreu, J. Mazon, J. Rossi and J. Toledo, Nonlocal Diffusion Problems, Vol. 165, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/165.
    [2] D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347. 
    [3] C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Commun. Pure Appl. Math., 65 (2012), 337-380.  doi: 10.1002/cpa.21379.
    [4] K. BogdanT. Kulczycki and A. Nowak, gradient estimates for harmonic and $q$-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556. 
    [5] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Patial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.
    [6] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-diffenrential equations, Commun. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.
    [7] W. ChenL. D. D'Ambrosio and Y. Li, Some Liouville theorems for the fractional Laplacian, Nonlinear Anal. Theory Meth. Appl., 121 (2015), 370-381.  doi: 10.1016/j.na.2014.11.003.
    [8] W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.
    [9] W. Chen, C. Li and G. Li, Maximum priciple for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differ. Equ., 56 (2017), 29 pp. doi: 10.1007/s00526-017-1110-3.
    [10] W. ChenC. Li and Y. Li, A drirect method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.
    [11] W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.
    [12] W. ChenC. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.  doi: 10.3934/dcds.2005.12.347.
    [13] W. Chen and L. Wu, A maximum principle on unbounded domains and a Liouville theorem for fractional $p$-harmonic functions, preprint, arXiv: 1905.09986.
    [14] W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equ., 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.
    [15] T. Cheng, Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017), 3587-3599.  doi: 10.3934/dcds.2017154.
    [16] T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math., 19 (2017), Art. 1750018. doi: 10.1142/S0219199717500183.
    [17] E. De Giorgi, Convergence problems for functionals and operators, in Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, Pitagora, (1979), 131–188.
    [18] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., 6 (1981), 883-901.  doi: 10.1080/03605308108820196.
    [19] X. HanG. Lu and J. Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differ. Equ., 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.
    [20] C. Kenig and W. Ni, An exterior Dirichlet problem with applications to some nonlinear equations arising in geometry, Amer. J. Math., 106 (1984), 689-702.  doi: 10.2307/2374291.
    [21] L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859.  doi: 10.3934/cpaa.2006.5.855.
    [22] P. PolacikP. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part Ⅰ: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.
    [23] P. Wang and P. Niu, A direct method of moving planes for a fully nonlinear nonlocal system, Commun. Pure Appl. Anal., 16 (2017), 1707-1718.  doi: 10.3934/cpaa.2017082.
    [24] R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and nonexistence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.
  • 加载中
SHARE

Article Metrics

HTML views(2087) PDF downloads(272) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return