
-
Previous Article
Motion of interfaces for a damped hyperbolic Allen–Cahn equation
- CPAA Home
- This Issue
-
Next Article
Improved blow up criterion for the three dimensional incompressible magnetohydrodynamics system
Exponential mixing for the fractional Magneto-Hydrodynamic equations with degenerate stochastic forcing
1. | MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, 410081, China, Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, 410081, China |
2. | College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, China |
We establish the existence, uniqueness and exponential attraction properties of an invariant measure for the MHD equations with degenerate stochastic forcing acting only in the magnetic equation. The central challenge is to establish time asymptotic smoothing properties of the associated Markovian semigroup corresponding to this system. Towards this aim we take full advantage of the characteristics of the advective structure to discover a novel Hörmander-type condition which only allows for several noises in the magnetic direction.
References:
[1] |
S. Albeverio, A. Debussche and L. Xu,
Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noises, Appl. Math. Optim., 66 (2012), 273-308.
doi: 10.1007/s00245-012-9172-2. |
[2] |
V. Barbu and G. Da Prato,
Existence and ergodicity for the two-dimensional stochastic Magnetohydrodynamics equations, Appl. Math. Optim., 56 (2007), 145-168.
doi: 10.1007/s00245-007-0882-2. |
[3] | H. Cababbes, Theoretical Magnetofluiddynamics, Academic Press, New york, 1970. Google Scholar |
[4] |
C. Cao, D. Regmi and J. Wu,
The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion, J. Differ. Equ., 253 (2013), 2661-2681.
doi: 10.1016/j.jde.2013.01.002. |
[5] |
C. Cao and J. Wu,
Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.
doi: 10.1016/j.aim.2010.08.017. |
[6] |
G. Duvaut and J. L. Lions,
Inequations en Thermolasticit et magntohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-79.
doi: 10.1007/BF00250512. |
[7] |
W. E and J. C. Mattingly,
Ergodicity for the Navier-Stokes Equation with Degenerate Random Forcing: Finite-Dimensional Approximation, Commun. Pure Appl. Math., 54 (2001), 1386-1402.
doi: 10.1002/cpa.10007. |
[8] |
J. Földes, N. Glatt-Holtz, G. Richards and E. Thomann,
Ergodic and mixing properties of the Boussinesq equations with a degenerate random forcing, J. Funct. Anal., 269 (2015), 2427-2504.
doi: 10.1016/j.jfa.2015.05.014. |
[9] |
H. Martin and J. C. Mattingly,
Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164 (2006), 993-1032.
doi: 10.4007/annals.2006.164.993. |
[10] |
H. Martin and J. C. Mattingly,
Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Probab., 36 (2008), 2050-2091.
doi: 10.1214/08-AOP392. |
[11] |
H. Martin and J. C. Mattingly,
A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, Electron. J. Probab., 16 (2011), 658-738.
doi: 10.1214/EJP.v16-875. |
[12] |
J. Huang and T. Shen,
Well-posedness and dynamics of the stochastic fractional magneto-hydrodynamic equations, Nonlinear Anal., 133 (2016), 102-133.
doi: 10.1016/j.na.2015.12.001. |
[13] |
T. Komorowski and A. Walczuk, Central limit theorem for Markov processes with spectral gap in the Wasserstein metric, Stoch. Process. Their Appl., 122 2012, 2155-2184.
doi: 10.1016/j.spa.2012.03.006. |
[14] |
S. Kuksin and A. Shirikyan,
A Coupling Approach to Randomly Forced Nonlinear PDEs. I, Commun. Math. Phys., 221 (2001), 351-366.
doi: 10.1007/s002200100479. |
[15] |
S. Kuksin and A. Shirikyan,
Coupling approach to white-forced nonlinear PDEs, J. Math. Pures Appl., 81 (2002), 567-602.
doi: 10.1016/S0021-7824(02)01259-X. |
[16] |
S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge University press, 2012.
doi: 10.1017/CBO9781139137119.![]() ![]() |
[17] |
Z. Lei and Y. Zhou,
BKM's criterion and Global weak solutions for magnetohydrodynamics with zero viscosity, Discrete Contin. Dyn. Syst., 25 (2009), 575-583.
doi: 10.3934/dcds.2009.25.575. |
[18] |
J. C. Mattingly,
Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics, Commun. Math. Phys., 230 (2002), 421-462.
doi: 10.1007/s00220-002-0688-1. |
[19] |
G. Da Parto and J. Zabcyzk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() |
[20] |
M. Röckner and X. Zhang,
Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity, Probab. Theory Relat. Fields, 145 (2009), 211-267.
doi: 10.1007/s00440-008-0167-5. |
[21] |
M. Sermange and R. Temam,
Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 36 (1983), 635-664.
doi: 10.1002/cpa.3160360506. |
[22] |
T. Shen and J. Huang,
Ergodicity of stochastic Magneto-Hydrodynamic equations driven by $\alpha$-stable noise, J. Math. Anal. Appl., 446 (2017), 746-769.
doi: 10.1016/j.jmaa.2016.08.050. |
[23] |
T. Shen, J. Huang and C. Zeng, Ergodicity of the 2D stochastic fractional Magneto-hydrodynamic equations driven by degenerate multiplicative noise, preprint. Google Scholar |
[24] |
J. Wu,
Generalized MHD equations, J. Differ. Equ., 195 (2003), 284-312.
doi: 10.1016/j.jde.2003.07.007. |
show all references
References:
[1] |
S. Albeverio, A. Debussche and L. Xu,
Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noises, Appl. Math. Optim., 66 (2012), 273-308.
doi: 10.1007/s00245-012-9172-2. |
[2] |
V. Barbu and G. Da Prato,
Existence and ergodicity for the two-dimensional stochastic Magnetohydrodynamics equations, Appl. Math. Optim., 56 (2007), 145-168.
doi: 10.1007/s00245-007-0882-2. |
[3] | H. Cababbes, Theoretical Magnetofluiddynamics, Academic Press, New york, 1970. Google Scholar |
[4] |
C. Cao, D. Regmi and J. Wu,
The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion, J. Differ. Equ., 253 (2013), 2661-2681.
doi: 10.1016/j.jde.2013.01.002. |
[5] |
C. Cao and J. Wu,
Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.
doi: 10.1016/j.aim.2010.08.017. |
[6] |
G. Duvaut and J. L. Lions,
Inequations en Thermolasticit et magntohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-79.
doi: 10.1007/BF00250512. |
[7] |
W. E and J. C. Mattingly,
Ergodicity for the Navier-Stokes Equation with Degenerate Random Forcing: Finite-Dimensional Approximation, Commun. Pure Appl. Math., 54 (2001), 1386-1402.
doi: 10.1002/cpa.10007. |
[8] |
J. Földes, N. Glatt-Holtz, G. Richards and E. Thomann,
Ergodic and mixing properties of the Boussinesq equations with a degenerate random forcing, J. Funct. Anal., 269 (2015), 2427-2504.
doi: 10.1016/j.jfa.2015.05.014. |
[9] |
H. Martin and J. C. Mattingly,
Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164 (2006), 993-1032.
doi: 10.4007/annals.2006.164.993. |
[10] |
H. Martin and J. C. Mattingly,
Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Probab., 36 (2008), 2050-2091.
doi: 10.1214/08-AOP392. |
[11] |
H. Martin and J. C. Mattingly,
A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, Electron. J. Probab., 16 (2011), 658-738.
doi: 10.1214/EJP.v16-875. |
[12] |
J. Huang and T. Shen,
Well-posedness and dynamics of the stochastic fractional magneto-hydrodynamic equations, Nonlinear Anal., 133 (2016), 102-133.
doi: 10.1016/j.na.2015.12.001. |
[13] |
T. Komorowski and A. Walczuk, Central limit theorem for Markov processes with spectral gap in the Wasserstein metric, Stoch. Process. Their Appl., 122 2012, 2155-2184.
doi: 10.1016/j.spa.2012.03.006. |
[14] |
S. Kuksin and A. Shirikyan,
A Coupling Approach to Randomly Forced Nonlinear PDEs. I, Commun. Math. Phys., 221 (2001), 351-366.
doi: 10.1007/s002200100479. |
[15] |
S. Kuksin and A. Shirikyan,
Coupling approach to white-forced nonlinear PDEs, J. Math. Pures Appl., 81 (2002), 567-602.
doi: 10.1016/S0021-7824(02)01259-X. |
[16] |
S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge University press, 2012.
doi: 10.1017/CBO9781139137119.![]() ![]() |
[17] |
Z. Lei and Y. Zhou,
BKM's criterion and Global weak solutions for magnetohydrodynamics with zero viscosity, Discrete Contin. Dyn. Syst., 25 (2009), 575-583.
doi: 10.3934/dcds.2009.25.575. |
[18] |
J. C. Mattingly,
Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics, Commun. Math. Phys., 230 (2002), 421-462.
doi: 10.1007/s00220-002-0688-1. |
[19] |
G. Da Parto and J. Zabcyzk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() |
[20] |
M. Röckner and X. Zhang,
Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity, Probab. Theory Relat. Fields, 145 (2009), 211-267.
doi: 10.1007/s00440-008-0167-5. |
[21] |
M. Sermange and R. Temam,
Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 36 (1983), 635-664.
doi: 10.1002/cpa.3160360506. |
[22] |
T. Shen and J. Huang,
Ergodicity of stochastic Magneto-Hydrodynamic equations driven by $\alpha$-stable noise, J. Math. Anal. Appl., 446 (2017), 746-769.
doi: 10.1016/j.jmaa.2016.08.050. |
[23] |
T. Shen, J. Huang and C. Zeng, Ergodicity of the 2D stochastic fractional Magneto-hydrodynamic equations driven by degenerate multiplicative noise, preprint. Google Scholar |
[24] |
J. Wu,
Generalized MHD equations, J. Differ. Equ., 195 (2003), 284-312.
doi: 10.1016/j.jde.2003.07.007. |


[1] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[2] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
[3] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021021 |
[4] |
Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367 |
[5] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[6] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[7] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[8] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
[9] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[10] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[11] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[12] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[13] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[14] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[15] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[16] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[17] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282 |
[18] |
Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094 |
[19] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[20] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]