This paper concerns with the motion of the interface for a damped hyperbolic Allen–Cahn equation, in a bounded domain of $ \mathbb{R}^n $, for $ n = 2 $ or $ n = 3 $. In particular, we focus the attention on radially symmetric solutions and extend to the hyperbolic framework some well-known results of the classic parabolic case: it is shown that, under appropriate assumptions on the initial data and on the boundary conditions, the interface moves by mean curvature as the diffusion coefficient goes to $ 0 $.
Citation: |
[1] |
M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen–Cahn equation and the FitzHugh–Nagumo system, J. Differ. Equ., 245 (2008), 505-565.
doi: 10.1016/j.jde.2008.01.014.![]() ![]() ![]() |
[2] |
S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085-1095.
![]() |
[3] |
L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension, Commun. Pure Appl. Math., 43 (1990), 983-997.
doi: 10.1002/cpa.3160430804.![]() ![]() ![]() |
[4] |
L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics, J. Differ. Equ., 90 (1991), 211-237.
doi: 10.1016/0022-0396(91)90147-2.![]() ![]() ![]() |
[5] |
J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t = \varepsilon^2u_xx-f(u)$, Commun. Pure Appl. Math., 42 (1989), 523-576.
doi: 10.1002/cpa.3160420502.![]() ![]() ![]() |
[6] |
C. Cattaneo, Sulla conduzione del calore, Atti del Semin. Mat. e Fis. Univ. Modena, 3 (1948), 83-101.
![]() ![]() |
[7] |
X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differ. Equ., 96 (1992), 116-141.
doi: 10.1016/0022-0396(92)90146-E.![]() ![]() ![]() |
[8] |
X. Chen, Generation, propagation, and annihilation of metastable patterns, J. Differ. Equ., 206 (2004), 399-437.
doi: 10.1016/j.jde.2004.05.017.![]() ![]() ![]() |
[9] |
Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differ. Geom., 33 (1991), 749-786.
![]() ![]() |
[10] |
P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), 1533-1589.
doi: 10.2307/2154960.![]() ![]() ![]() |
[11] |
L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 45 (1992), 1097-1123.
doi: 10.1002/cpa.3160450903.![]() ![]() ![]() |
[12] |
L. C. Evans and J. Spruck, Motion of level set by mean curvature I, J. Differ. Geom., 33 (1991), 635-681.
![]() ![]() |
[13] |
R. Folino, Slow motion for a hyperbolic variation of Allen–Cahn equation in one space dimension, J. Hyperbolic Differ. Equ., 14 (2017), 1-26.
doi: 10.1142/S0219891617500011.![]() ![]() ![]() |
[14] |
R. Folino, Slow motion for one-dimensional nonlinear damped hyperbolic Allen–Cahn systems, Electron. J. Differ. Equ., 2019 (2019), Art. 113, pp 21.
![]() ![]() |
[15] |
R. Folino, C. Lattanzio and C. Mascia, Metastable dynamics for hyperbolic variations of the Allen–Cahn equation, Commun. Math. Sci., 15 (2017), 2055-2085.
doi: 10.4310/CMS.2017.v15.n7.a12.![]() ![]() ![]() |
[16] |
G. Fusco and J. Hale, Slow-motion manifolds, dormant instability, and singular perturbations, J. Dyn. Differ. Equ., 1 (1989), 75-94.
doi: 10.1007/BF01048791.![]() ![]() ![]() |
[17] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variations, Birkhäuser, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0.![]() ![]() ![]() |
[18] |
L. Herrera and D. Pavon, Hyperbolic theories of dissipation: Why and when do we need them, Physica A, 307 (2002), 121-130.
![]() |
[19] |
D. Hilhorst and M. Nara, Singular limit of a damped wave equation with a bistable nonlinearity, SIAM J. Math. Anal., 46 (2014), 1701-1730.
doi: 10.1137/130921945.![]() ![]() ![]() |
[20] |
T. Hillen, Qualitative analysis of semilinear Cattaneo equations, Math. Models Meth. Appl. Sci., 8 (1998), 507-519.
doi: 10.1142/S0218202598000238.![]() ![]() ![]() |
[21] |
E. E. Holmes, Are diffusion models too simple? A comparison with telegraph models of invasion, Amer. Naturalist, 142 (1993), 779-795.
![]() |
[22] |
D. D. Joseph and L. Preziosi, Heat waves, Rev. Modern Phys., 61 (1989), 41-73.
doi: 10.1103/RevModPhys.61.41.![]() ![]() ![]() |
[23] |
D. D. Joseph and L. Preziosi, Addendum to the paper: "Heat waves" [Rev. Modern Phys. 61 (1989), 41–73], Rev. Modern Phys., 62 (1990), 375-391.
doi: 10.1103/RevModPhys.62.375.![]() ![]() ![]() |
[24] |
C. Lattanzio, C. Mascia, R. G. Plaza and C. Simeoni, Analytical and numerical investigation of traveling waves for the Allen–Cahn model with relaxation, Math. Models Meth. Appl. Sci., 26 (2016), 931-985.
doi: 10.1142/S0218202516500226.![]() ![]() ![]() |
[25] |
V. Mendez, S. Fedotov and W. Horsthemke, Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-11443-4.![]() ![]() ![]() |
[26] |
J. Rubinstein, P. Sternberg and J. Keller, Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math., 49 (1989), 116-133.
doi: 10.1137/0149007.![]() ![]() ![]() |
[27] |
P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Ration. Mech. Anal., 101 (1988), 209-260.
doi: 10.1007/BF00253122.![]() ![]() ![]() |
Solution for