September  2020, 19(9): 4545-4573. doi: 10.3934/cpaa.2020206

Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential

Laboratoire de Recherche: Analyse, Probabilité et Fractals, Université de Monastir, Faculté des Sciences, Avenue de l'environnement, 5019 Monastir, Tunisie

Received  January 2020 Revised  March 2020 Published  June 2020

We study the long time behaviour of the solutions for a class of nonlinear damped fractional Schrödinger type equation with anisotropic dispersion and in presence of a quadratic potential in a two dimensional unbounded domain. We prove that this behaviour is characterized by the existence of regular compact global attractor with finite fractal dimension.

Citation: Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206
References:
[1]

B. Alouini, Long-time behavior of a Bose-Einstein equation in a two dimensional thin domain, Commun. Pure Appl. Anal., 10 (2011), 1629-1643.  doi: 10.3934/cpaa.2011.10.1629.  Google Scholar

[2]

B. Alouini, Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 14 (2015), 1781-1801.  doi: 10.3934/cpaa.2015.14.1781.  Google Scholar

[3]

B. Alouini and O. Goubet, Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Discrete Contin. Dyn. Syst. B, 19 (2014), 651-677.  doi: 10.3934/dcdsb.2014.19.651.  Google Scholar

[4]

A. H. ArdilaL. Cely and M. Squassina, Logarithmic Bose-Einstein condensates with harmonic potential, Asymptotic Anal., 116 (2020), 27-40.  doi: 10.3233/ASY-191538.  Google Scholar

[5]

A. H. Ardila, Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity, Nonlinear Anal., 155 (2017), 52-64.  doi: 10.1016/j.na.2017.01.006.  Google Scholar

[6]

R. Askey and S. Wainger, Mean convergence of expensions in Laguerre and Hermite series, Amer. J. Math., 87 (1965), 695-708.  doi: 10.2307/2373069.  Google Scholar

[7]

Y. Bahri, S. Ibrahim and H. Kikuchi, Remarks on solitary waves and Cauchy problem for a half-wave Schrödinger equations, preprint, arXiv: math/1810.01385. Google Scholar

[8]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst. A, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[9]

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator, Proc. Indian. Acad. Sci. (Math. Sci.), 116 (2006), 337-360.  doi: 10.1007/BF02829750.  Google Scholar

[10]

R. Carles, Remarks on nonlinear Schrödinger equation with harmonic potential, Ann. Henri Poincare, 3 (2002), 757-772.  doi: 10.1007/s00023-002-8635-4.  Google Scholar

[11]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, Vol. 10, New York, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[12]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phy., 53 (2012), Art. 043507. doi: 10.1063/1.3701574.  Google Scholar

[13]

A. Choffrut and O. Pocovnicu, Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line, Int. Math. Res. Notices, 2018 (2018), 699-738.  doi: 10.1093/imrn/rnw246.  Google Scholar

[14]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, Vol. 19, ACTA, 2002.  Google Scholar

[15]

I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping, Memoirs of the American Mathematical Society, Amer. Math. Soc., Vol. 195, 2008. doi: 10.1090/memo/0912.  Google Scholar

[16]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[17]

Z. Ding and H. Hajaiej, On a fractional Schrödinger equation in the presence of harmonic potential, preprint, arXiv: math/1908.05719. Google Scholar

[18]

E. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2017), 500-545.  doi: 10.1002/cpa.20134.  Google Scholar

[19]

A. Esfahani and A. Pastor, Sharp constant of an anisotropic Gagliardo-Nirenberg type inequality and applications, Bull. Braz. Math. Soc., New Series, 48 (2017), 175-185.  doi: 10.1007/s00574-016-0017-5.  Google Scholar

[20]

G. B. Folland, Fourier Analysis and Its Applications, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992.  Google Scholar

[21]

P. Gérard and S. Grellier, The cubic Szegö equation, Ann. Sci. de L'école Norm. Super., 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[22]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $ \mathbb{R}^2$, Adv. Differ. Equ., 3 (1998), 337-360.   Google Scholar

[23]

O. Goubet and E. Zahrouni, Finite dimensional global attractor for a fractional nonlinear Schrödinger equation, NoDEA, 24 (2017), 59. doi: 10.1007/s00030-017-0482-6.  Google Scholar

[24]

L. Grafakos and S. Oh, The Kato-Ponce inequality, Commun. Partial Differ. Equ., 39 (2014), 1128-1157.  doi: 10.1080/03605302.2013.822885.  Google Scholar

[25]

B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Commun. Partial Differ. Equ., 36 (2011), 247-255.  doi: 10.1080/03605302.2010.503769.  Google Scholar

[26]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.  Google Scholar

[27]

C. Huang and L. Dong, Beam propagation management in a fractional Schrödinger equation, Sci. Rep., 7 (2017), 5442. doi: 10.1038/s41598-017-05926-5.  Google Scholar

[28]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[29]

K. Kirkpatrick and Y. Zhang, Fractional Schrödinger dynamics and decoherence, Physica D, 332 (2016), 41-54.  doi: 10.1016/j.physd.2016.05.015.  Google Scholar

[30]

H. Koch and D. Tataru, $L^p$ Eigenfunction bounds for the Hermite operator, Duke Math. J., 128 (2005), 369-392.  doi: 10.1215/S0012-7094-04-12825-8.  Google Scholar

[31]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[32]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), Art. 56108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[33]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear Schrödinger equations in $\mathbb{R}^N, \; N\leq 3$, NoDEA, 2 (1995), 357-369.  doi: 10.1007/BF01261181.  Google Scholar

[34]

Q. LiuY. ZhouJ. Zhang and W. Zhang, Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential, Appl. Math. Comput., 177 (2006), 482-487.  doi: 10.1016/j.amc.2005.11.024.  Google Scholar

[35]

S. Longhi, Fractional Schrödinger equation in optics, Optics Lett., 40 (2015), 1117-1120.  doi: 10.1364/OL.40.001117.  Google Scholar

[36]

C. Martinez and M. Sanz, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, North Holland, Vol. 187, 2001.  Google Scholar

[37]

F. Pinsker, W. Bao, Y. Zhang, H. Ohadi, A. Dreismann and J. Baumberg, Fractional quantum mechanics in polariton condensates with velocity dependent mass, Phys. Rev. B, 92 (2015), Art. 195310. doi: 10.1103/PhysRevB.92.195310.  Google Scholar

[38]

H. Pollard, The mean convergence of orthogonal series â…¡, Trans. Amer. Math. Soc., 63 (1948), 355-367.  doi: 10.2307/1990435.  Google Scholar

[39]

G. Raugel, Global Attractors in Partial Differential Equations, Handbook of dynamical systems, North-Holland, Vol. 2,885?82, North-Holland, Amsterdam, 2002. doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[40]

J. C. Robinson, Infinite Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and The Theorie of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001. doi: 10.1115/1.1579456.  Google Scholar

[41]

E. Russ, Racine carrées d'opérateurs elliptiques et espaces de Hardy, Confl. Math., 3 (2011), 1-119.  doi: 10.1142/S1793744211000278.  Google Scholar

[42]

B. A. Stickler, Potential condensed-matter realisation of space-fractional quantum mechanics: the one dimensional Lévy crystal, Phys. Rev. E, 88 (2013), Art. 012120. doi: 10.1103/PhysRevE.88.012120.  Google Scholar

[43]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer applied mathmatical sciences, Vol. 68, Springer-Verlag, 2$^nd$ Edition, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[44]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[45]

H. Xu, Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation, Math. Z., 286 (2017), 443-489.  doi: 10.1007/s00209-016-1768-9.  Google Scholar

[46]

Y. ZhangH. ZhongM. BeliećN. AhmedY. Zhang and M. Xiao, Diffraction free beams in fractional Schrödinger equation, Sci. Rep., 6 (2016), 1-8.  doi: 10.1038/srep23645.  Google Scholar

show all references

References:
[1]

B. Alouini, Long-time behavior of a Bose-Einstein equation in a two dimensional thin domain, Commun. Pure Appl. Anal., 10 (2011), 1629-1643.  doi: 10.3934/cpaa.2011.10.1629.  Google Scholar

[2]

B. Alouini, Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 14 (2015), 1781-1801.  doi: 10.3934/cpaa.2015.14.1781.  Google Scholar

[3]

B. Alouini and O. Goubet, Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Discrete Contin. Dyn. Syst. B, 19 (2014), 651-677.  doi: 10.3934/dcdsb.2014.19.651.  Google Scholar

[4]

A. H. ArdilaL. Cely and M. Squassina, Logarithmic Bose-Einstein condensates with harmonic potential, Asymptotic Anal., 116 (2020), 27-40.  doi: 10.3233/ASY-191538.  Google Scholar

[5]

A. H. Ardila, Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity, Nonlinear Anal., 155 (2017), 52-64.  doi: 10.1016/j.na.2017.01.006.  Google Scholar

[6]

R. Askey and S. Wainger, Mean convergence of expensions in Laguerre and Hermite series, Amer. J. Math., 87 (1965), 695-708.  doi: 10.2307/2373069.  Google Scholar

[7]

Y. Bahri, S. Ibrahim and H. Kikuchi, Remarks on solitary waves and Cauchy problem for a half-wave Schrödinger equations, preprint, arXiv: math/1810.01385. Google Scholar

[8]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst. A, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[9]

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator, Proc. Indian. Acad. Sci. (Math. Sci.), 116 (2006), 337-360.  doi: 10.1007/BF02829750.  Google Scholar

[10]

R. Carles, Remarks on nonlinear Schrödinger equation with harmonic potential, Ann. Henri Poincare, 3 (2002), 757-772.  doi: 10.1007/s00023-002-8635-4.  Google Scholar

[11]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, Vol. 10, New York, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[12]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phy., 53 (2012), Art. 043507. doi: 10.1063/1.3701574.  Google Scholar

[13]

A. Choffrut and O. Pocovnicu, Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line, Int. Math. Res. Notices, 2018 (2018), 699-738.  doi: 10.1093/imrn/rnw246.  Google Scholar

[14]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, Vol. 19, ACTA, 2002.  Google Scholar

[15]

I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping, Memoirs of the American Mathematical Society, Amer. Math. Soc., Vol. 195, 2008. doi: 10.1090/memo/0912.  Google Scholar

[16]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[17]

Z. Ding and H. Hajaiej, On a fractional Schrödinger equation in the presence of harmonic potential, preprint, arXiv: math/1908.05719. Google Scholar

[18]

E. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2017), 500-545.  doi: 10.1002/cpa.20134.  Google Scholar

[19]

A. Esfahani and A. Pastor, Sharp constant of an anisotropic Gagliardo-Nirenberg type inequality and applications, Bull. Braz. Math. Soc., New Series, 48 (2017), 175-185.  doi: 10.1007/s00574-016-0017-5.  Google Scholar

[20]

G. B. Folland, Fourier Analysis and Its Applications, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992.  Google Scholar

[21]

P. Gérard and S. Grellier, The cubic Szegö equation, Ann. Sci. de L'école Norm. Super., 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[22]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $ \mathbb{R}^2$, Adv. Differ. Equ., 3 (1998), 337-360.   Google Scholar

[23]

O. Goubet and E. Zahrouni, Finite dimensional global attractor for a fractional nonlinear Schrödinger equation, NoDEA, 24 (2017), 59. doi: 10.1007/s00030-017-0482-6.  Google Scholar

[24]

L. Grafakos and S. Oh, The Kato-Ponce inequality, Commun. Partial Differ. Equ., 39 (2014), 1128-1157.  doi: 10.1080/03605302.2013.822885.  Google Scholar

[25]

B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Commun. Partial Differ. Equ., 36 (2011), 247-255.  doi: 10.1080/03605302.2010.503769.  Google Scholar

[26]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.  Google Scholar

[27]

C. Huang and L. Dong, Beam propagation management in a fractional Schrödinger equation, Sci. Rep., 7 (2017), 5442. doi: 10.1038/s41598-017-05926-5.  Google Scholar

[28]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[29]

K. Kirkpatrick and Y. Zhang, Fractional Schrödinger dynamics and decoherence, Physica D, 332 (2016), 41-54.  doi: 10.1016/j.physd.2016.05.015.  Google Scholar

[30]

H. Koch and D. Tataru, $L^p$ Eigenfunction bounds for the Hermite operator, Duke Math. J., 128 (2005), 369-392.  doi: 10.1215/S0012-7094-04-12825-8.  Google Scholar

[31]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[32]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), Art. 56108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[33]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear Schrödinger equations in $\mathbb{R}^N, \; N\leq 3$, NoDEA, 2 (1995), 357-369.  doi: 10.1007/BF01261181.  Google Scholar

[34]

Q. LiuY. ZhouJ. Zhang and W. Zhang, Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential, Appl. Math. Comput., 177 (2006), 482-487.  doi: 10.1016/j.amc.2005.11.024.  Google Scholar

[35]

S. Longhi, Fractional Schrödinger equation in optics, Optics Lett., 40 (2015), 1117-1120.  doi: 10.1364/OL.40.001117.  Google Scholar

[36]

C. Martinez and M. Sanz, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, North Holland, Vol. 187, 2001.  Google Scholar

[37]

F. Pinsker, W. Bao, Y. Zhang, H. Ohadi, A. Dreismann and J. Baumberg, Fractional quantum mechanics in polariton condensates with velocity dependent mass, Phys. Rev. B, 92 (2015), Art. 195310. doi: 10.1103/PhysRevB.92.195310.  Google Scholar

[38]

H. Pollard, The mean convergence of orthogonal series â…¡, Trans. Amer. Math. Soc., 63 (1948), 355-367.  doi: 10.2307/1990435.  Google Scholar

[39]

G. Raugel, Global Attractors in Partial Differential Equations, Handbook of dynamical systems, North-Holland, Vol. 2,885?82, North-Holland, Amsterdam, 2002. doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[40]

J. C. Robinson, Infinite Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and The Theorie of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001. doi: 10.1115/1.1579456.  Google Scholar

[41]

E. Russ, Racine carrées d'opérateurs elliptiques et espaces de Hardy, Confl. Math., 3 (2011), 1-119.  doi: 10.1142/S1793744211000278.  Google Scholar

[42]

B. A. Stickler, Potential condensed-matter realisation of space-fractional quantum mechanics: the one dimensional Lévy crystal, Phys. Rev. E, 88 (2013), Art. 012120. doi: 10.1103/PhysRevE.88.012120.  Google Scholar

[43]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer applied mathmatical sciences, Vol. 68, Springer-Verlag, 2$^nd$ Edition, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[44]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[45]

H. Xu, Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation, Math. Z., 286 (2017), 443-489.  doi: 10.1007/s00209-016-1768-9.  Google Scholar

[46]

Y. ZhangH. ZhongM. BeliećN. AhmedY. Zhang and M. Xiao, Diffraction free beams in fractional Schrödinger equation, Sci. Rep., 6 (2016), 1-8.  doi: 10.1038/srep23645.  Google Scholar

[1]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[2]

Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781

[3]

Vladimir S. Gerdjikov. Bose-Einstein condensates and spectral properties of multicomponent nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1181-1197. doi: 10.3934/dcdss.2011.4.1181

[4]

Kui Li, Zhitao Zhang. A perturbation result for system of Schrödinger equations of Bose-Einstein condensates in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 851-860. doi: 10.3934/dcds.2016.36.851

[5]

Florian Méhats, Christof Sparber. Dimension reduction for rotating Bose-Einstein condensates with anisotropic confinement. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5097-5118. doi: 10.3934/dcds.2016021

[6]

Weizhu Bao, Loïc Le Treust, Florian Méhats. Dimension reduction for dipolar Bose-Einstein condensates in the strong interaction regime. Kinetic & Related Models, 2017, 10 (3) : 553-571. doi: 10.3934/krm.2017022

[7]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[8]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[9]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[10]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[11]

Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic & Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029

[12]

P.G. Kevrekidis, Dimitri J. Frantzeskakis. Multiple dark solitons in Bose-Einstein condensates at finite temperatures. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1199-1212. doi: 10.3934/dcdss.2011.4.1199

[13]

Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic & Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1

[14]

Pedro J. Torres, R. Carretero-González, S. Middelkamp, P. Schmelcher, Dimitri J. Frantzeskakis, P.G. Kevrekidis. Vortex interaction dynamics in trapped Bose-Einstein condensates. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1589-1615. doi: 10.3934/cpaa.2011.10.1589

[15]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[16]

Vadym Vekslerchik, Víctor M. Pérez-García. Exact solution of the two-mode model of multicomponent Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 179-192. doi: 10.3934/dcdsb.2003.3.179

[17]

Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

[18]

Anne de Bouard, Reika Fukuizumi, Romain Poncet. Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2793-2817. doi: 10.3934/dcdsb.2015.20.2793

[19]

Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306

[20]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

2019 Impact Factor: 1.105

Article outline

[Back to Top]