• Previous Article
    The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries
  • CPAA Home
  • This Issue
  • Next Article
    Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential
September  2020, 19(9): 4575-4598. doi: 10.3934/cpaa.2020207

Optimal decay to the non-isentropic compressible micropolar fluids

a. 

School of Mathematics and statistics, Wuhan University, Wuhan 430072, China

b. 

Center for Mathematical Sciences and Department of Mathematics, Wuhan University of Technology, Wuhan 430070, China

* Corresponding author

Received  January 2020 Revised  April 2020 Published  June 2020

Fund Project: The second author is supported by NSF grant No.11971359, 11671309

In this paper, we are concerned with the large-time behavior of solutions to the Cauchy problem on the non-isentropic compressible micropolar fluid. For the initial data near the given equilibrium we prove the global well-posedness of classical solutions and obtain the optimal algebraic rate of convergence in the three-dimensional whole space. Moreover, it turns out that the density, the velocity and the temperature tend to the corresponding equilibrium state with rate $ (1+t)^{-3 / 4} $ in $ L^{2} $ norm and the micro-rotational velocity tends to the equilibrium state with the faster rate $ (1+t)^{-5 / 4} $ in $ L^{2} $ norm. The proof is based on the detailed analysis of the Green function and time-weighted energy estimates.

Citation: Lvqiao liu, Lan Zhang. Optimal decay to the non-isentropic compressible micropolar fluids. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4575-4598. doi: 10.3934/cpaa.2020207
References:
[1]

Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differ. Equ., 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[2]

B. Q. DongJ. Li and J. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differ. Equ., 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.  Google Scholar

[3]

R. Duan, Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ., 8 (2011), 375-413.  doi: 10.1142/S0219891611002421.  Google Scholar

[4]

R. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133-197.  doi: 10.1142/S0219530512500078.  Google Scholar

[5]

R. DuanQ. Liu and C. Zhu, Darcy's law and diffusion for a two-fluid Euler-Maxwell system with dissipation, Math. Models Meth. Appl. Sci., 25 (2015), 2089-2151.  doi: 10.1142/S0218202515500530.  Google Scholar

[6]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[7]

B. Huang, L. Liu and L. Zhang, Global dynamics of 3d compressible micropolar fluids with vacuum and large oscillations, preprint. Google Scholar

[8]

B. Huang and L. Zhang, A global existence of classical solutions to the two-dimensional vlasov-fokker-planck and magnetohydrodynamics equations with large initial data, Kinet. Relat. Models, 12 (2019), 357. doi: 10.3934/krm.2019016.  Google Scholar

[9]

X. Huang and J. Li, Global Well-Posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data, preprint, arXiv: 1207.3746. Google Scholar

[10]

S. Kawashima, Large-time behavior of solutions for hyperbolic-parabolic systems of conservation laws, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 285-287.   Google Scholar

[11]

J. Li, Global well-posedness of the 1D compressible Navier-Stokes equations with constant heat conductivity and nonnegative density, arXiv e-prints, 2018. Google Scholar

[12]

Q. Liu and P. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differ. Equ., 260 (2016), 7634-7661.  doi: 10.1016/j.jde.2016.01.037.  Google Scholar

[13]

Q. Liu and P. Zhang, Long-time behavior of solution to the compressible micropolar fluids with external force, Nonlinear Anal. Real World Appl., 40 (2018), 361-376.  doi: 10.1016/j.nonrwa.2017.08.007.  Google Scholar

[14]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: a global existence theorem, Glas. Mat. Ser. III, 33 (1998), 199-208.   Google Scholar

[15]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: a local existence theorem, Glas. Mat. Ser. III, 33 (1998), 71-91.   Google Scholar

[16]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: regularity of the solution, Rad. Mat., 10 (2001), 181-193.   Google Scholar

[17]

N. Mujaković, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.  Google Scholar

[18]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.  doi: 10.14492/hokmj/1381757663.  Google Scholar

[19]

M. E. Taylor, Partial Differential Equations, Vol. 23, Texts in Applied Mathematics, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.  Google Scholar

[20]

M. E. Taylor, Partial Differential Equations. I, Vol. 115, Applied Mathematical Sciences, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.  Google Scholar

[21]

V. A. Vaĭgant and A. V. Kazhikhov, On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid, Sibirsk. Mat. Zh., 36 (1995), 1283-1316.  doi: 10.1007/BF02106835.  Google Scholar

[22]

Z. Wu and W. Wang, Green's function and pointwise estimate for a generalized Poisson-Nernst-Planck-Navier-Stokes model in dimension three, Z. Angew. Math. Mech., 98 (2018), 1066-1085.  doi: 10.1002/zamm.201700109.  Google Scholar

[23]

Z. Wu and W. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differ. Equ., 265 (2018), 2544-2576.  doi: 10.1016/j.jde.2018.04.039.  Google Scholar

show all references

References:
[1]

Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differ. Equ., 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[2]

B. Q. DongJ. Li and J. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differ. Equ., 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.  Google Scholar

[3]

R. Duan, Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ., 8 (2011), 375-413.  doi: 10.1142/S0219891611002421.  Google Scholar

[4]

R. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133-197.  doi: 10.1142/S0219530512500078.  Google Scholar

[5]

R. DuanQ. Liu and C. Zhu, Darcy's law and diffusion for a two-fluid Euler-Maxwell system with dissipation, Math. Models Meth. Appl. Sci., 25 (2015), 2089-2151.  doi: 10.1142/S0218202515500530.  Google Scholar

[6]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[7]

B. Huang, L. Liu and L. Zhang, Global dynamics of 3d compressible micropolar fluids with vacuum and large oscillations, preprint. Google Scholar

[8]

B. Huang and L. Zhang, A global existence of classical solutions to the two-dimensional vlasov-fokker-planck and magnetohydrodynamics equations with large initial data, Kinet. Relat. Models, 12 (2019), 357. doi: 10.3934/krm.2019016.  Google Scholar

[9]

X. Huang and J. Li, Global Well-Posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data, preprint, arXiv: 1207.3746. Google Scholar

[10]

S. Kawashima, Large-time behavior of solutions for hyperbolic-parabolic systems of conservation laws, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 285-287.   Google Scholar

[11]

J. Li, Global well-posedness of the 1D compressible Navier-Stokes equations with constant heat conductivity and nonnegative density, arXiv e-prints, 2018. Google Scholar

[12]

Q. Liu and P. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differ. Equ., 260 (2016), 7634-7661.  doi: 10.1016/j.jde.2016.01.037.  Google Scholar

[13]

Q. Liu and P. Zhang, Long-time behavior of solution to the compressible micropolar fluids with external force, Nonlinear Anal. Real World Appl., 40 (2018), 361-376.  doi: 10.1016/j.nonrwa.2017.08.007.  Google Scholar

[14]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: a global existence theorem, Glas. Mat. Ser. III, 33 (1998), 199-208.   Google Scholar

[15]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: a local existence theorem, Glas. Mat. Ser. III, 33 (1998), 71-91.   Google Scholar

[16]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: regularity of the solution, Rad. Mat., 10 (2001), 181-193.   Google Scholar

[17]

N. Mujaković, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.  Google Scholar

[18]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.  doi: 10.14492/hokmj/1381757663.  Google Scholar

[19]

M. E. Taylor, Partial Differential Equations, Vol. 23, Texts in Applied Mathematics, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.  Google Scholar

[20]

M. E. Taylor, Partial Differential Equations. I, Vol. 115, Applied Mathematical Sciences, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.  Google Scholar

[21]

V. A. Vaĭgant and A. V. Kazhikhov, On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid, Sibirsk. Mat. Zh., 36 (1995), 1283-1316.  doi: 10.1007/BF02106835.  Google Scholar

[22]

Z. Wu and W. Wang, Green's function and pointwise estimate for a generalized Poisson-Nernst-Planck-Navier-Stokes model in dimension three, Z. Angew. Math. Mech., 98 (2018), 1066-1085.  doi: 10.1002/zamm.201700109.  Google Scholar

[23]

Z. Wu and W. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differ. Equ., 265 (2018), 2544-2576.  doi: 10.1016/j.jde.2018.04.039.  Google Scholar

[1]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[2]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[3]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[4]

Shuai Huang, Zhi-Ping Fan, Xiaohuan Wang. Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy. Journal of Industrial & Management Optimization, 2021, 17 (1) : 261-277. doi: 10.3934/jimo.2019110

[5]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[6]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[7]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[8]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[9]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[10]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[11]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[12]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[13]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[16]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[17]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[18]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[19]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[20]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (89)
  • HTML views (85)
  • Cited by (0)

Other articles
by authors

[Back to Top]