October  2020, 19(10): 4727-4770. doi: 10.3934/cpaa.2020210

Uniqueness of positive radial solutions of the Brezis-Nirenberg problem on thin annular domains on $ {\mathbb S}^n $ and symmetry breaking bifurcations

1. 

Department of Mathematics, Faculty of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

2. 

Department of Computer Science, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan

*Corresponding author

Received  October 2018 Revised  May 2020 Published  July 2020

Fund Project: This work is partially supported by the Grant-in-Aid for Scientific Research (C) (No. 26400160 and No. 18K03387) from Japan Society for the Promotion of Science

We consider the Brezis-Nirenberg problem
$ \begin{cases} \Delta_{{\mathbb S}^n}U +\lambda U + U^p = 0, \, U>0 & \text{in $\Omega_{\theta_1, \theta_2}$, }\\ U = 0&\text{on $\partial \Omega_{\theta_1, \theta_2}$, } \end{cases} $
where
$ \Omega_{\theta_1, \theta_2} $
is the set of the points whose great circle distance from
$ (0, \ldots, 0, 1) $
is greater than
$ \theta_2 $
and less than
$ \theta_1 $
. If the annular domain is sufficiently thin, we show that the problem has a unique positive solution whose value depends only on the great circle distance from
$ (0, \ldots, 0, 1) $
and there exists a nonradial bifurcation arising from the solution.
Citation: Naoki Shioji, Kohtaro Watanabe. Uniqueness of positive radial solutions of the Brezis-Nirenberg problem on thin annular domains on $ {\mathbb S}^n $ and symmetry breaking bifurcations. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4727-4770. doi: 10.3934/cpaa.2020210
References:
[1]

H. Amann and S. A. Weiss, On the uniqueness of the topological degree, Math. Z., 130 (1973), 39-54.  doi: 10.1007/BF01178975.  Google Scholar

[2]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Springer, London, 2011. doi: 10.1007/978-0-85729-227-8.  Google Scholar

[3]

C. Bandle and R. Benguria, The Brézis-Nirenberg problem on $\mathbb S^3$, J. Differ. Equ., 178 (2002), 264-279.  doi: 10.1006/jdeq.2001.4006.  Google Scholar

[4]

C. Bandle and Y. Kabeya, On the positive, radial solutions of a semilinear elliptic equation in $\mathbb H^N$, Adv. Nonlinear Anal., 1 (2012), 1-25.  doi: 10.1515/ana-2011-0004.  Google Scholar

[5]

T. Bartsch M. ClappM. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains, Math. Ann., 352 (2012), 485-515.  doi: 10.1007/s00208-011-0646-3.  Google Scholar

[6]

M. Bonforte, F. Gazzola, G. Grillo and J. L. Vázquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space, Calc. Var. Partial Differ. Equ., 46 (2013), 0944-2669. doi: 10.1007/s00526-011-0486-8.  Google Scholar

[7]

H. Brezis and L. A. Peletier, Elliptic equations with critical exponent on spherical caps of $S^3$, J. Anal. Math., 98 (2006), 279-316.  doi: 10.1007/BF02790278.  Google Scholar

[8]

R. F. Brown, A Topological Introduction to Nonlinear Analysis, 3$^{rd}$ edition, Springer, Cham, 2014. doi: 10.1007/978-3-319-11794-2.  Google Scholar

[9]

C. V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differ. Equ., 54 (1984), 429-437.  doi: 10.1016/0022-0396(84)90153-0.  Google Scholar

[10]

P. FelmerS. Martínez and K. Tanaka, Uniqueness of radially symmetric positive solutions for $-\Delta+u = u^p$ in an annulus, J. Differ. Equ., 245 (2008), 1198-1209.  doi: 10.1016/j.jde.2008.06.006.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.  Google Scholar

[12]

F. GladialiM. Grossi and F. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var. Partial Differ. Equ., 40 (2011), 295-317.  doi: 10.1007/s00526-010-0341-3.  Google Scholar

[13]

Y. Kabeya and K. Tanaka, Uniqueness of positive radial solutions of semilinear elliptic equations in $\mathbf{R}^ N$ and Séré's non-degeneracy condition, Commun. Partial Differ. Equ., 24 (1999), 563-598.  doi: 10.1080/03605309908821434.  Google Scholar

[14]

R. Kajikiya, Multiple positive solutions of the Emden-Fowler equation in hollow thin symmetric domains, Calc. Var. Partial Differ. Equ., 52 (2015), 681-704.  doi: 10.1007/s00526-014-0729-6.  Google Scholar

[15]

A. Kosaka, Emden equation involving the critical Sobolev exponent with the third-kind boundary condition in $\mathbf{ S}^3$, Kodai Math. J., 35 (2012), 613-628.   Google Scholar

[16]

Y. Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differ. Equ., 83 (1990), 348-367.  doi: 10.1016/0022-0396(90)90062-T.  Google Scholar

[17]

G. Mancini and K. Sandeep, On a semilinear elliptic equation in $\mathbb H^n$, Ann. Scuola Norm. Super. Pisa-Cl. Sci. (5), 7 (2008), 635–671.  Google Scholar

[18]

J. Mawhin, Leray-Schauder degree: a half century of extensions and applications, Topol. Meth. Nonlinear Anal., 14 (1999), 195-228.  doi: 10.12775/TMNA.1999.029.  Google Scholar

[19]

N. Mizoguchi and T. Suzuki, Semilinear elliptic equations on annuli in three and higher dimensions, Houston J. Math., 22 (1996), 199-215.   Google Scholar

[20]

F. Morabito, Radial and non-radial solutions to an elliptic problem on annular domains in Riemannian manifolds with radial symmetry, J. Differ. Equ., 258 (2015), 1461-1493.  doi: 10.1016/j.jde.2014.11.004.  Google Scholar

[21]

W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u, r) = 0$, Commun. Pure Appl. Math., 38 (1985), 67-108.  doi: 10.1002/cpa.3160380105.  Google Scholar

[22]

N. Shioji and K. Watanabe, Radial symmetry of positive solutions for semilinear elliptic equations in the unit ball via elliptic and hyperbolic geometry, J. Differ. Equ., 252 (2012), 1392-1402.  doi: 10.1016/j.jde.2011.10.001.  Google Scholar

[23]

N. Shioji and K. Watanabe, A generalized Pohožaev identity and uniqueness of positive radial solutions of $\Delta u+g(r)u+h(r)u^p = 0$, J. Differ. Equ., 255 (2013), 4448-4475.  doi: 10.1016/j.jde.2013.08.017.  Google Scholar

[24]

N. Shioji and K. Watanabe, Uniqueness of positive solutions of Brezis-Nirenberg problems on $\mathbb H^n$, Linear Nonlinear Anal., 1 (2015), 261-270.   Google Scholar

[25]

N. Shioji and K. Watanabe, Uniqueness and nondegeneracy of positive radial solutions of $ {\rm{div}} (\rho\nabla u)+\rho(-gu+hu^p) = 0$, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 32. doi: 10.1007/s00526-016-0970-2.  Google Scholar

[26]

J. Smoller and A. G. Wasserman, Symmetry-breaking for solutions of semilinear elliptic equations with general boundary conditions, Commun. Math. Phys., 105 (1986), 415-441.   Google Scholar

[27]

J. Smoller and A. G. Wasserman, Bifurcation and symmetry-breaking, Invent. Math., 100 (1990), 63-95.  doi: 10.1007/BF01231181.  Google Scholar

[28]

P. N. Srikanth, Symmetry breaking for a class of semilinear elliptic problems, Ann. Inst. Henri Poincare Anal. Non Lineaire, 7 (1990), 107-112.  doi: 10.1016/S0294-1449(16)30301-8.  Google Scholar

[29]

F. Uhlig, Constructive ways for generating (generalized) real orthogonal matrices as products of (generalized) symmetries, Linear Algebra Appl., 332/334 (2001), 459-467.  doi: 10.1016/S0024-3795(01)00296-8.  Google Scholar

show all references

References:
[1]

H. Amann and S. A. Weiss, On the uniqueness of the topological degree, Math. Z., 130 (1973), 39-54.  doi: 10.1007/BF01178975.  Google Scholar

[2]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Springer, London, 2011. doi: 10.1007/978-0-85729-227-8.  Google Scholar

[3]

C. Bandle and R. Benguria, The Brézis-Nirenberg problem on $\mathbb S^3$, J. Differ. Equ., 178 (2002), 264-279.  doi: 10.1006/jdeq.2001.4006.  Google Scholar

[4]

C. Bandle and Y. Kabeya, On the positive, radial solutions of a semilinear elliptic equation in $\mathbb H^N$, Adv. Nonlinear Anal., 1 (2012), 1-25.  doi: 10.1515/ana-2011-0004.  Google Scholar

[5]

T. Bartsch M. ClappM. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains, Math. Ann., 352 (2012), 485-515.  doi: 10.1007/s00208-011-0646-3.  Google Scholar

[6]

M. Bonforte, F. Gazzola, G. Grillo and J. L. Vázquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space, Calc. Var. Partial Differ. Equ., 46 (2013), 0944-2669. doi: 10.1007/s00526-011-0486-8.  Google Scholar

[7]

H. Brezis and L. A. Peletier, Elliptic equations with critical exponent on spherical caps of $S^3$, J. Anal. Math., 98 (2006), 279-316.  doi: 10.1007/BF02790278.  Google Scholar

[8]

R. F. Brown, A Topological Introduction to Nonlinear Analysis, 3$^{rd}$ edition, Springer, Cham, 2014. doi: 10.1007/978-3-319-11794-2.  Google Scholar

[9]

C. V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differ. Equ., 54 (1984), 429-437.  doi: 10.1016/0022-0396(84)90153-0.  Google Scholar

[10]

P. FelmerS. Martínez and K. Tanaka, Uniqueness of radially symmetric positive solutions for $-\Delta+u = u^p$ in an annulus, J. Differ. Equ., 245 (2008), 1198-1209.  doi: 10.1016/j.jde.2008.06.006.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.  Google Scholar

[12]

F. GladialiM. Grossi and F. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var. Partial Differ. Equ., 40 (2011), 295-317.  doi: 10.1007/s00526-010-0341-3.  Google Scholar

[13]

Y. Kabeya and K. Tanaka, Uniqueness of positive radial solutions of semilinear elliptic equations in $\mathbf{R}^ N$ and Séré's non-degeneracy condition, Commun. Partial Differ. Equ., 24 (1999), 563-598.  doi: 10.1080/03605309908821434.  Google Scholar

[14]

R. Kajikiya, Multiple positive solutions of the Emden-Fowler equation in hollow thin symmetric domains, Calc. Var. Partial Differ. Equ., 52 (2015), 681-704.  doi: 10.1007/s00526-014-0729-6.  Google Scholar

[15]

A. Kosaka, Emden equation involving the critical Sobolev exponent with the third-kind boundary condition in $\mathbf{ S}^3$, Kodai Math. J., 35 (2012), 613-628.   Google Scholar

[16]

Y. Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differ. Equ., 83 (1990), 348-367.  doi: 10.1016/0022-0396(90)90062-T.  Google Scholar

[17]

G. Mancini and K. Sandeep, On a semilinear elliptic equation in $\mathbb H^n$, Ann. Scuola Norm. Super. Pisa-Cl. Sci. (5), 7 (2008), 635–671.  Google Scholar

[18]

J. Mawhin, Leray-Schauder degree: a half century of extensions and applications, Topol. Meth. Nonlinear Anal., 14 (1999), 195-228.  doi: 10.12775/TMNA.1999.029.  Google Scholar

[19]

N. Mizoguchi and T. Suzuki, Semilinear elliptic equations on annuli in three and higher dimensions, Houston J. Math., 22 (1996), 199-215.   Google Scholar

[20]

F. Morabito, Radial and non-radial solutions to an elliptic problem on annular domains in Riemannian manifolds with radial symmetry, J. Differ. Equ., 258 (2015), 1461-1493.  doi: 10.1016/j.jde.2014.11.004.  Google Scholar

[21]

W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u, r) = 0$, Commun. Pure Appl. Math., 38 (1985), 67-108.  doi: 10.1002/cpa.3160380105.  Google Scholar

[22]

N. Shioji and K. Watanabe, Radial symmetry of positive solutions for semilinear elliptic equations in the unit ball via elliptic and hyperbolic geometry, J. Differ. Equ., 252 (2012), 1392-1402.  doi: 10.1016/j.jde.2011.10.001.  Google Scholar

[23]

N. Shioji and K. Watanabe, A generalized Pohožaev identity and uniqueness of positive radial solutions of $\Delta u+g(r)u+h(r)u^p = 0$, J. Differ. Equ., 255 (2013), 4448-4475.  doi: 10.1016/j.jde.2013.08.017.  Google Scholar

[24]

N. Shioji and K. Watanabe, Uniqueness of positive solutions of Brezis-Nirenberg problems on $\mathbb H^n$, Linear Nonlinear Anal., 1 (2015), 261-270.   Google Scholar

[25]

N. Shioji and K. Watanabe, Uniqueness and nondegeneracy of positive radial solutions of $ {\rm{div}} (\rho\nabla u)+\rho(-gu+hu^p) = 0$, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 32. doi: 10.1007/s00526-016-0970-2.  Google Scholar

[26]

J. Smoller and A. G. Wasserman, Symmetry-breaking for solutions of semilinear elliptic equations with general boundary conditions, Commun. Math. Phys., 105 (1986), 415-441.   Google Scholar

[27]

J. Smoller and A. G. Wasserman, Bifurcation and symmetry-breaking, Invent. Math., 100 (1990), 63-95.  doi: 10.1007/BF01231181.  Google Scholar

[28]

P. N. Srikanth, Symmetry breaking for a class of semilinear elliptic problems, Ann. Inst. Henri Poincare Anal. Non Lineaire, 7 (1990), 107-112.  doi: 10.1016/S0294-1449(16)30301-8.  Google Scholar

[29]

F. Uhlig, Constructive ways for generating (generalized) real orthogonal matrices as products of (generalized) symmetries, Linear Algebra Appl., 332/334 (2001), 459-467.  doi: 10.1016/S0024-3795(01)00296-8.  Google Scholar

[1]

Isabel Flores. Singular solutions of the Brezis-Nirenberg problem in a ball. Communications on Pure & Applied Analysis, 2009, 8 (2) : 673-682. doi: 10.3934/cpaa.2009.8.673

[2]

Orlando Lopes. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2265-2282. doi: 10.3934/cpaa.2019102

[3]

Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445

[4]

Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112

[5]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[6]

Zhongyuan Liu. Concentration of solutions for the fractional Nirenberg problem. Communications on Pure & Applied Analysis, 2016, 15 (2) : 563-576. doi: 10.3934/cpaa.2016.15.563

[7]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic & Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002

[8]

Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505

[9]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[10]

Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41

[11]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[12]

Ruofei Yao, Yi Li, Hongbin Chen. Uniqueness of positive radial solutions of a semilinear elliptic equation in an annulus. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1585-1594. doi: 10.3934/dcds.2018122

[13]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[14]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[15]

Fanni M. Sélley. Symmetry breaking in a globally coupled map of four sites. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3707-3734. doi: 10.3934/dcds.2018161

[16]

Lucio Cadeddu, Giovanni Porru. Symmetry breaking in problems involving semilinear equations. Conference Publications, 2011, 2011 (Special) : 219-228. doi: 10.3934/proc.2011.2011.219

[17]

Claudia Anedda, Giovanni Porru. Symmetry breaking and other features for Eigenvalue problems. Conference Publications, 2011, 2011 (Special) : 61-70. doi: 10.3934/proc.2011.2011.61

[18]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[19]

Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317

[20]

Pablo L. De Nápoli, Irene Drelichman, Ricardo G. Durán. Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1629-1642. doi: 10.3934/cpaa.2012.11.1629

2019 Impact Factor: 1.105

Article outline

[Back to Top]