October  2020, 19(10): 4817-4838. doi: 10.3934/cpaa.2020213

On the strauss index of semilinear tricomi equation

1. 

School of Mathematics, Southeast University, Nanjing 211189, China

2. 

Mathematical Institute, University of Göttingen, Bunsenstr. 3-5, 37073 Göttingen, Germany

3. 

School of Mathematical Sciences and Mathematical Institute, Nanjing Normal University, Nanjing 210023, China

* Corresponding author

Received  September 2019 Revised  May 2020 Published  July 2020

Fund Project: Authors are supported by National Natural Science Foundation of China (grant No. 11901103, No. 11571177, No. 11731007)

In our previous papers, we have given a systematic study on the global existence versus blowup problem for the small-data solution
$ u $
of the multi-dimensional semilinear Tricomi equation
$ \begin{equation*} \partial_t^2 u-t\, \Delta u = |u|^p, \quad \big(u(0, \cdot), \partial_t u(0, \cdot)\big) = (u_0, u_1), \end{equation*} $
where
$ t>0 $
,
$ x\in \mathbb R^n $
,
$n\geq2$
,
$ p>1 $
, and
$ u_i\in C_0^{\infty}( \mathbb R^n) $
(
$ i = 0, 1 $
). In this article, we deal with the remaining 1-D problem, for which the stationary phase method for multi-dimensional case fails to work and the large time decay rate of
$\|u(t, \cdot)\|_{L^\infty_x(\mathbb R)}$
is not enough. The main ingredient of the proof in this paper is to use the structure of the linear equation to get the suitable decay rate of
$u$
in
$t$
, then the crucial weighted Strichartz estimates are established and the global existence of solution
$ u $
is proved when
$ p>5 $
.
Citation: Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213
References:
[1]

J. Barros Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator I, II, III, Duke Math. J., 98 (1999), 465–483; 111 (2002), 561–584; 117 (2003), 385–387. doi: 10.1215/S0012-7094-99-09814-9.  Google Scholar

[2]

M. Beals, Singularities due to cusp interactions in nonlinear waves in "Nonlinear Hyperbolic Equations and Field Theory", Pitman Res. Notes Math. Ser., Longman Sci. Tech. Harlow, 253 (1992), 36–51.  Google Scholar

[3]

L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Surv. Appl. Math., Vol.3, Chapman and Hall, London, 1958.  Google Scholar

[4]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Meth. Appl. Sci., 6 (2015), 1032-1045.  doi: 10.1002/mma.3126.  Google Scholar

[5]

A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.  Google Scholar

[6]

A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.  Google Scholar

[7]

A. Galstian, Global existence for the one-dimensional second order semilinear hyperbolic equations, J. Math. Anal. Appl., 344 (2008), 76-98.  doi: 10.1016/j.jmaa.2008.02.022.  Google Scholar

[8]

R. T. Glassey, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z., 177 (1981), 323-340.  doi: 10.1007/BF01162066.  Google Scholar

[9]

R. T. Glassey, Existence in the large for $\Box$u = F(u) in two space dimensions, Math. Z., 178 (1981), 233-261.  doi: 10.1007/BF01262042.  Google Scholar

[10]

V. GeorgievH. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semi-linear wave equations, Amer. J. Math., 119 (1997), 1291-1319.  doi: 10.1353/ajm.1997.0038.  Google Scholar

[11]

D. K. Gvazava, The global solution of the Tricomi problem for a class of nonlinear mixed differential equations, Differ. Equ., 3 (1967), 1-4.   Google Scholar

[12]

D. Y. HeI. Witt and H. C. Yin, On the global solution problem of semilinear generalized Tricomi equations, I, Calc. Var. Partial Differ. Equ., 56 (2017), 1-24.  doi: 10.1007/s00526-017-1125-9.  Google Scholar

[13]

D. Y. He, I. Witt and H. C. Yin, On the global solution problem of semilinear generalized Tricomi equations, II, preprint, arXiv: 1611.07606, to appear in Pac. J. Math., 2020. doi: 10.1007/s00526-017-1125-9.  Google Scholar

[14]

D. Y. HeI. Witt and H. C. Yin, On semilinear Tricomi equations with critical exponents or in two space dimensions, J. Differ. Equ., 263 (2017), 8102-8137.  doi: 10.1016/j.jde.2017.08.033.  Google Scholar

[15]

D. Y. He, I. Witt and H. C. Yin, Finite time blowup for the 1-D semilinear Tricomi equation with critical exponent, preprint, 2019. Google Scholar

[16]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscr. Math., 28 (1979), 235-265.  doi: 10.1007/BF01647974.  Google Scholar

[17]

J. Lin and Z. Tu, Lifespan of semilinear generalized Tricomi equation with Strauss type exponent, preprint, arXiv: 1903.11351. Google Scholar

[18]

H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.  doi: 10.1006/jfan.1995.1075.  Google Scholar

[19]

D. LupoC. S. Morawetz and K. R. Payne, On closed boundary value problems for equations of mixed elliptic-hyperbolic type, Commun. Pure Appl. Math., 60 (2007), 1319-1348.  doi: 10.1002/cpa.20169.  Google Scholar

[20]

D. Lupo and K. R. Payne, Spectral bounds for Tricomi problems and application to semilinear existence and existence with uniqueness results, J. Differ. Equ., 184 (2002), 139-162.  doi: 10.1006/jdeq.2001.4139.  Google Scholar

[21]

D. Lupo and K. R. Payne, Critical exponents for semilinear equations of mixed elliptic-hyperbolic and degenerate types, Commun. Pure Appl. Math., 56 (2003), 403-424.  doi: 10.1002/cpa.3031.  Google Scholar

[22]

D. Lupo and K. R. Payne, Conservation laws for equations of mixed elliptic-hyperbolic and degenerate types, Duke Math. J., 127 (2005), 251-290.  doi: 10.1215/S0012-7094-04-12722-8.  Google Scholar

[23]

C. S. Morawetz, Mixed equations and transonic flow, J. Hyperbolic Differ. Equ., 1 (2004), 1-26.  doi: 10.1142/S0219891604000081.  Google Scholar

[24]

Z. P. Ruan, I. Witt and H. C. Yin, On the existence and cusp singularity of solutions to semilinear generalized Tricomi equations with discontinuous initial data, Commun. Contemp. Math., 17 (2015), 49 pp. doi: 10.1142/S021919971450028X.  Google Scholar

[25]

Z. P. RuanI. Witt and H. C. Yin, On the existence of low regularity solutions to semilinear generalized Tricomi equations in mixed type domains, J. Differ. Equ., 259 (2015), 7406-7462.  doi: 10.1016/j.jde.2015.08.025.  Google Scholar

[26]

Z. P. RuanI. Witt and H. C. Yin, Minimal regularity solutions of semilinear generalized Tricomi equations, Pac. J. Math., 296 (2018), 181-226.  doi: 10.2140/pjm.2018.296.181.  Google Scholar

[27]

J. Schaeffer, The equation $u_tt-\Delta u = |u|^p$ for the critical value of p, Proc. R. Soc. Edinb., 101 (1985), 31-44.  doi: 10.1017/S0308210500026135.  Google Scholar

[28]

T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differ. Equ., 52 (1984), 378-406.  doi: 10.1016/0022-0396(84)90169-4.  Google Scholar

[29]

C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Math., Vol. 105, 1993. doi: 10.1017/CBO9780511530029.  Google Scholar

[30]

W. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133.  doi: 10.1016/0022-1236(81)90063-X.  Google Scholar

[31]

K. Taniguchi and Y. Tozaki, A hyperbolic equation with double characteristics which has a solution with branching singularities, Math. Jpn., 25 (1980), 279-300.   Google Scholar

[32]

K. Yagdjian, A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain, J. Differ. Equ., 206 (2004), 227-252.  doi: 10.1016/j.jde.2004.07.028.  Google Scholar

[33]

K. Yagdjian, Global existence in the Cauchy problem for nonlinear wave equations with variable speed of propagation, Oper. Theory Adv. Appl., 159 (2005), 301-385.  doi: 10.1007/3-7643-7386-5_4.  Google Scholar

[34]

K. Yagdjian, Global existence for the $n$-dimensional semilinear Tricomi-type equations, Commun. Partial Differ. Equ., 31 (2006), 907-944.  doi: 10.1080/03605300500361511.  Google Scholar

[35]

K. Yagdjian, The self-similar solutions of the Tricomi-type equations, Z. angew. Math. Phys., 58 (2007), 612-645.  doi: 10.1007/s00033-006-5099-2.  Google Scholar

[36]

B. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361-374.  doi: 10.1016/j.jfa.2005.03.012.  Google Scholar

[37]

Y. Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Differ. Equ., 8 (1995), 135-144.   Google Scholar

show all references

References:
[1]

J. Barros Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator I, II, III, Duke Math. J., 98 (1999), 465–483; 111 (2002), 561–584; 117 (2003), 385–387. doi: 10.1215/S0012-7094-99-09814-9.  Google Scholar

[2]

M. Beals, Singularities due to cusp interactions in nonlinear waves in "Nonlinear Hyperbolic Equations and Field Theory", Pitman Res. Notes Math. Ser., Longman Sci. Tech. Harlow, 253 (1992), 36–51.  Google Scholar

[3]

L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Surv. Appl. Math., Vol.3, Chapman and Hall, London, 1958.  Google Scholar

[4]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Meth. Appl. Sci., 6 (2015), 1032-1045.  doi: 10.1002/mma.3126.  Google Scholar

[5]

A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.  Google Scholar

[6]

A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.  Google Scholar

[7]

A. Galstian, Global existence for the one-dimensional second order semilinear hyperbolic equations, J. Math. Anal. Appl., 344 (2008), 76-98.  doi: 10.1016/j.jmaa.2008.02.022.  Google Scholar

[8]

R. T. Glassey, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z., 177 (1981), 323-340.  doi: 10.1007/BF01162066.  Google Scholar

[9]

R. T. Glassey, Existence in the large for $\Box$u = F(u) in two space dimensions, Math. Z., 178 (1981), 233-261.  doi: 10.1007/BF01262042.  Google Scholar

[10]

V. GeorgievH. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semi-linear wave equations, Amer. J. Math., 119 (1997), 1291-1319.  doi: 10.1353/ajm.1997.0038.  Google Scholar

[11]

D. K. Gvazava, The global solution of the Tricomi problem for a class of nonlinear mixed differential equations, Differ. Equ., 3 (1967), 1-4.   Google Scholar

[12]

D. Y. HeI. Witt and H. C. Yin, On the global solution problem of semilinear generalized Tricomi equations, I, Calc. Var. Partial Differ. Equ., 56 (2017), 1-24.  doi: 10.1007/s00526-017-1125-9.  Google Scholar

[13]

D. Y. He, I. Witt and H. C. Yin, On the global solution problem of semilinear generalized Tricomi equations, II, preprint, arXiv: 1611.07606, to appear in Pac. J. Math., 2020. doi: 10.1007/s00526-017-1125-9.  Google Scholar

[14]

D. Y. HeI. Witt and H. C. Yin, On semilinear Tricomi equations with critical exponents or in two space dimensions, J. Differ. Equ., 263 (2017), 8102-8137.  doi: 10.1016/j.jde.2017.08.033.  Google Scholar

[15]

D. Y. He, I. Witt and H. C. Yin, Finite time blowup for the 1-D semilinear Tricomi equation with critical exponent, preprint, 2019. Google Scholar

[16]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscr. Math., 28 (1979), 235-265.  doi: 10.1007/BF01647974.  Google Scholar

[17]

J. Lin and Z. Tu, Lifespan of semilinear generalized Tricomi equation with Strauss type exponent, preprint, arXiv: 1903.11351. Google Scholar

[18]

H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.  doi: 10.1006/jfan.1995.1075.  Google Scholar

[19]

D. LupoC. S. Morawetz and K. R. Payne, On closed boundary value problems for equations of mixed elliptic-hyperbolic type, Commun. Pure Appl. Math., 60 (2007), 1319-1348.  doi: 10.1002/cpa.20169.  Google Scholar

[20]

D. Lupo and K. R. Payne, Spectral bounds for Tricomi problems and application to semilinear existence and existence with uniqueness results, J. Differ. Equ., 184 (2002), 139-162.  doi: 10.1006/jdeq.2001.4139.  Google Scholar

[21]

D. Lupo and K. R. Payne, Critical exponents for semilinear equations of mixed elliptic-hyperbolic and degenerate types, Commun. Pure Appl. Math., 56 (2003), 403-424.  doi: 10.1002/cpa.3031.  Google Scholar

[22]

D. Lupo and K. R. Payne, Conservation laws for equations of mixed elliptic-hyperbolic and degenerate types, Duke Math. J., 127 (2005), 251-290.  doi: 10.1215/S0012-7094-04-12722-8.  Google Scholar

[23]

C. S. Morawetz, Mixed equations and transonic flow, J. Hyperbolic Differ. Equ., 1 (2004), 1-26.  doi: 10.1142/S0219891604000081.  Google Scholar

[24]

Z. P. Ruan, I. Witt and H. C. Yin, On the existence and cusp singularity of solutions to semilinear generalized Tricomi equations with discontinuous initial data, Commun. Contemp. Math., 17 (2015), 49 pp. doi: 10.1142/S021919971450028X.  Google Scholar

[25]

Z. P. RuanI. Witt and H. C. Yin, On the existence of low regularity solutions to semilinear generalized Tricomi equations in mixed type domains, J. Differ. Equ., 259 (2015), 7406-7462.  doi: 10.1016/j.jde.2015.08.025.  Google Scholar

[26]

Z. P. RuanI. Witt and H. C. Yin, Minimal regularity solutions of semilinear generalized Tricomi equations, Pac. J. Math., 296 (2018), 181-226.  doi: 10.2140/pjm.2018.296.181.  Google Scholar

[27]

J. Schaeffer, The equation $u_tt-\Delta u = |u|^p$ for the critical value of p, Proc. R. Soc. Edinb., 101 (1985), 31-44.  doi: 10.1017/S0308210500026135.  Google Scholar

[28]

T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differ. Equ., 52 (1984), 378-406.  doi: 10.1016/0022-0396(84)90169-4.  Google Scholar

[29]

C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Math., Vol. 105, 1993. doi: 10.1017/CBO9780511530029.  Google Scholar

[30]

W. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133.  doi: 10.1016/0022-1236(81)90063-X.  Google Scholar

[31]

K. Taniguchi and Y. Tozaki, A hyperbolic equation with double characteristics which has a solution with branching singularities, Math. Jpn., 25 (1980), 279-300.   Google Scholar

[32]

K. Yagdjian, A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain, J. Differ. Equ., 206 (2004), 227-252.  doi: 10.1016/j.jde.2004.07.028.  Google Scholar

[33]

K. Yagdjian, Global existence in the Cauchy problem for nonlinear wave equations with variable speed of propagation, Oper. Theory Adv. Appl., 159 (2005), 301-385.  doi: 10.1007/3-7643-7386-5_4.  Google Scholar

[34]

K. Yagdjian, Global existence for the $n$-dimensional semilinear Tricomi-type equations, Commun. Partial Differ. Equ., 31 (2006), 907-944.  doi: 10.1080/03605300500361511.  Google Scholar

[35]

K. Yagdjian, The self-similar solutions of the Tricomi-type equations, Z. angew. Math. Phys., 58 (2007), 612-645.  doi: 10.1007/s00033-006-5099-2.  Google Scholar

[36]

B. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361-374.  doi: 10.1016/j.jfa.2005.03.012.  Google Scholar

[37]

Y. Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Differ. Equ., 8 (1995), 135-144.   Google Scholar

[1]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[2]

Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723

[3]

Michel Pierre, Morgan Pierre. Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5347-5377. doi: 10.3934/dcds.2013.33.5347

[4]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[5]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[6]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[7]

Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018

[8]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[9]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure & Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[10]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[11]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[12]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[13]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

[14]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[15]

Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure & Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031

[16]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[17]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[18]

Perikles G. Papadopoulos, Nikolaos M. Stavrakakis. Global existence for a wave equation on $R^n$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 139-149. doi: 10.3934/dcdss.2008.1.139

[19]

Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070

[20]

Yong Chen, Hongjun Gao. Global existence for the stochastic Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5171-5184. doi: 10.3934/dcds.2015.35.5171

2019 Impact Factor: 1.105

Article outline

[Back to Top]