\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundedness in prey-taxis system with rotational flux terms

  • * Corresponding author

    * Corresponding author

The authors are supported in part by the National Natural Science Foundation of China (No.11671079, 11701290, 11601127 and 11171063), the Natural Science Foundation of Jiangsu Province(No.BK20170896), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No.KYCX19_0054)

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • This paper investigates prey-taxis system with rotational flux terms

    $ \begin{equation*} \begin{cases} u_t = \Delta u-\nabla\cdot(uS(x,u,v)\nabla v)+uv-\rho u,& x\in\Omega,\ t>0,\\ v_t = \Delta v-\xi uv+\mu v(1-\alpha v),&x\in\Omega,\ t>0, \end{cases} \end{equation*} $

    under no-flux boundary conditions in a bounded domain $ \Omega\subset\mathbb{R}^n\; (n\geq1) $ with smooth boundary. Here the matrix-valued function $ S\in C^2(\bar{\Omega}\times[0,\infty)^2;\mathbb{R}^{n\times n}) $ fulfills $ |S(x,u,v)|\leq\frac{S_0(v)}{(1+u)^\theta}(\theta\geq0) $ for all $ (x,u,v)\in\bar{\Omega}\times[0,\infty)^2 $ with some nondecreasing function $ S_0 $. It is proved that for nonnegative initial data $ u_0\in C^0(\overline{\Omega}) $ and $ v_0\in W^{1,q}(\Omega) $ with some $ q>\max\{n,2\} $, if one of the following assumptions holds: (i) $ n = 1 $, (ii) $ n\geq2, \theta = 0 $ and $ S_0(m)m<\frac{2}{\sqrt{3n(11n+2)}} $, (iii) $ \theta>0 $, then the model possesses a global classical solution that is uniformly bounded. Where $ m: = \max\{\|v_0\|_{L^\infty(\Omega)}, \frac{1}{\alpha}\} $.

    Mathematics Subject Classification: 35B45, 35K55, 35K65, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] B. AinsebaM. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086-2105.  doi: 10.1016/j.nonrwa.2007.06.017.
    [2] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.
    [3] C. Jin, Y. Wang and J. Yin, Global solvability and stability to a nutrient-taxis model with porous medium slow diffusion, preprint, arXiv: 1804.03964. doi: 10.1016/j.jde.2018.02.031.
    [4] H. Y. Jin and Z. A. Wang, Global stability of prey-taxis systems, J. Differ. Equ., 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.
    [5] P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Amer. Nat., 130 (1987), 233-270. 
    [6] J. M. LeeT. Hillen and M. A. Lewis, Continuous traveling waves for prey-taxis, Bull. Math. Biol., 70 (2008), 654-676.  doi: 10.1007/s11538-007-9271-4.
    [7] J. M. LeeT. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.  doi: 10.1080/17513750802716112.
    [8] T. LiA. SuenM. Winkler and C. Xue, Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms, Math. Models Meth. Appl. Sci., 25 (2015), 721-746.  doi: 10.1142/S0218202515500177.
    [9] W. W. MurdochJ. Chesson and P. L. Chesson, Biological control in theory and practice, Amer. Nat., 125 (1985), 344-366. 
    [10] M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103 (1993), 146-178.  doi: 10.1006/jdeq.1993.1045.
    [11] N. SapoukhinaY. Tyutyunov and R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, Amer. Nat., 162 (2003), 61-76. 
    [12] Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.
    [13] J. Wang and M. Wang, Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis, Z. Angew. Math. Phys., 69 (2018), Art. 63, 24 pp. doi: 10.1007/s00033-018-0960-7.
    [14] M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673.  doi: 10.1002/mana.200810838.
    [15] M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.  doi: 10.1137/140979708.
    [16] M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differ. Equ., 263 (2017), 4826-4869.  doi: 10.1016/j.jde.2017.06.002.
    [17] M. Winkler, Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems?, Int. Math. Res. Not., 2019.
    [18] Q. Zhang, Boundedness in chemotaxis systems with rotational flux terms, Math. Nachr., 289 (2016), 2323-2334.  doi: 10.1002/mana.201500325.
  • 加载中
SHARE

Article Metrics

HTML views(2228) PDF downloads(260) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return