This paper is concerned with the study of the behavior of the free boundary for a class of solutions to a two-dimensional one-phase Bernoulli free boundary problem with mixed periodic-Dirichlet boundary conditions. It is shown that if the free boundary of a symmetric local minimizer approaches the point where the two different conditions meet, then it must do so at an angle of $ \pi/2 $.
Citation: |
[1] | H. W. Alt, Strömungen durch inhomogene poröse Medien mit freiem Rand, J. Reine Angew. Math., 305 (1979), 89-115. doi: 10.1515/crll.1979.305.89. |
[2] | H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. |
[3] | H. W. Alt, L. A. Caffarelli and A. Friedman, Axially symmetric jet flows, Arch. Rational Mech. Anal., 81 (1983), 97-149. doi: 10.1007/BF00250648. |
[4] | H. W. Alt, L. A. Caffarelli and A. Friedman, Jets with two fluids. I. One free boundary, Indiana Univ. Math. J., 33 (1984), 213-247. doi: 10.1512/iumj.1984.33.33011. |
[5] | C. J. Amick and L. E. Fraenkel, On the behavior near the crest of waves of extreme form, Trans. Amer. Math. Soc., 299 (1987), 273-298. doi: 10.2307/2000494. |
[6] | C. J. Amick, L. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214. doi: 10.1007/BF02392728. |
[7] | J. Andersson, On the regularity of a free boundary near contact points with a fixed boundary, J. Differ. Equ., 232 (2007), 285-302. doi: 10.1016/j.jde.2006.06.012. |
[8] | J. Andersson, N. Matevosyan and H. Mikayelyan, On the tangential touch between the free and the fixed boundaries for the two-phase obstacle-like problem, Ark. Mat., 44 (2006), 1-15. doi: 10.1007/s11512-005-0005-2. |
[9] | D. Arama and G. Leoni, On a variational approach for water waves, Commun. Partial Differ. Equ., 37 (2012), 833-874. doi: 10.1080/03605302.2012.661819. |
[10] | M. Bazarganzadeh and E. Lindgren, Tangential touch between the free and the fixed boundary in a semilinear free boundary problem in two dimensions, Ark. Mat., 52 (2014), 21-42. doi: 10.1007/s11512-012-0179-3. |
[11] | H. Berestycki, L. A. Caffarelli and L. Nirenberg, Uniform estimates for regularization of free boundary problems, in Analysis and Partial Differential Equations, vol. 122, Lecture Notes in Pure and Appl. Math., Dekker, New York, (1990), 567–619. |
[12] | A. Bonnet, On the regularity of edges in image segmentation, Ann. Inst. Henri Poincare Anal. Non Lineaire, 13 (1996), 485-528. doi: 10.1016/S0294-1449(16)30111-1. |
[13] | L. A. Caffarelli and A. Friedman, Axially symmetric infinite cavities, Indiana Univ. Math. J., 31 (1982), 135-160. doi: 10.1512/iumj.1982.31.31014. |
[14] | L. A. Caffarelli, D. Jerison and C. E. Kenig, Global energy minimizers for free boundary problems and full regularity in three dimensions, in Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, vol. 350, Contemp. Math., Amer. Math. Soc., Providence, RI, (2004), 83–97. doi: 10.1090/conm/350/06339. |
[15] | L. A. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems, vol. 68, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068. |
[16] | H. Chang-Lara and O. Savin, Boundary regularity for the free boundary in the one-phase problem, in New developments in the analysis of nonlocal operators, vol. 723, Contemp. Math. doi: 10.1090/conm/723/14549. |
[17] | A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math.(2), 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12. |
[18] | G. Dal Maso, J. M. Morel and S. Solimini, A variational method in image segmentation: existence and approximation results, Acta Math., 168 (1992), 89-151. doi: 10.1007/BF02392977. |
[19] | D. De Silva and D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., 635 (2009), 1-21. doi: 10.1515/CRELLE.2009.074. |
[20] | N. Edelen and M. Engelstein, Quantitative stratification for some free-boundary problems, Trans. Amer. Math. Soc., 371 (2019), 2043-2072. doi: 10.1090/tran/7401. |
[21] | A. Friedman, Variational Principles and Free-Boundary Problems, 2$^nd$ edition, Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1988. |
[22] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^nd$ edition, Springer, New York, 1984. doi: 10.1007/978-3-642-61798-0. |
[23] | G. Gravina and G. Leoni, On the existence of non-flat profiles for a Bernoulli free boundary problem, To appear, Adv. Calc. Var.. |
[24] | P. Grisvard, Elliptic Problems in Nonsmooth Domains, Vol. 24, Monograph and Studies in Mathematics, Boston, Massachusetts, 1985. |
[25] | A. Gurevich, Boundary regularity for free boundary problems, Commun. Pure Appl. Math., 52 (1999), 363-403. doi: 10.1002/(SICI)1097-0312(199903)52:3<363::AID-CPA3>3.3.CO;2-L. |
[26] | D. Jerison and O. Savin, Some remarks on stability of cones for the one-phase free boundary problem, Geom. Funct. Anal., 25 (2015), 1240-1257. doi: 10.1007/s00039-015-0335-6. |
[27] | A. L. Karakhanyan, C. E. Kenig and H. Shahgholian, The behavior of the free boundary near the fixed boundary for a minimization problem, Calc. Var. Partial Differ. Equ., 28 (2007), 15-31. doi: 10.1007/s00526-006-0029-x. |
[28] | G. Keady and J. Norbury, On the existence theory for irrotational water waves, Math. Proc. Camb. Philos. Soc., 83 (1978), 137-157. doi: 10.1017/S0305004100054372. |
[29] | J. P. Krasovskiǐ, On the theory of steady-state waves of finite amplitude, Ž. Vyčisl. Mat i Mat. Fiz., 1 (1961), 836–855. |
[30] | Y. Liu, Axially symmetric jet flows arising from high-speed fiber coating, Nonlinear Anal., 23 (1994), 319-363. doi: 10.1016/0362-546X(94)90175-9. |
[31] | J. B. McLeod, The Stokes and Krasovskii conjectures for the wave of greatest height, Stud. Appl. Math., 98 (1997), 311-333. doi: 10.1111/1467-9590.00051. |
[32] | P. I. Plotnikov, Proof of the Stokes conjecture in the theory of surface waves, Stud. Appl. Math., 108 (2002), 217–244. Translated from Dinamika Sploshn. Sredy No. 57 (1982), 41-76. doi: 10.1111/1467-9590.01408. |
[33] | S. Raynor, Neumann fixed boundary regularity for an elliptic free boundary problem, Commun. Partial Differ. Equ., 33 (2008), 1975-1995. doi: 10.1080/03605300802402658. |
[34] | J. F. Toland, On the existence of a wave of greatest height and Stokes's conjecture, Proc. R. Soc. Lond. A, 363 (1978), 469-485. doi: 10.1098/rspa.1978.0178. |
[35] | E. Varvaruca and G. S. Weiss, A geometric approach to generalized Stokes conjectures, Acta Math., 206 (2011), 363-403. doi: 10.1007/s11511-011-0066-y. |
[36] | E. Varvaruca and G. S. Weiss, The Stokes conjecture for waves with vorticity, Ann. Inst. Henri Poincare Anal. Non Lineaire, 29 (2012), 861-885. doi: 10.1016/j.anihpc.2012.05.001. |
[37] | G. S. Weiss, Partial regularity for a minimum problem with free boundary, J. Geom. Anal., 9 (1999), 317-326. doi: 10.1007/BF02921941. |
[38] | G. S. Weiss, Boundary monotonicity formulae and applications to free boundary problems. I. The elliptic case, Electron. J. Differ. Equ., (2004), Art. 44, 1–12. |
[39] | G. S. Weiss and G. Zhang, A free boundary approach to two-dimensional steady capillary gravity water waves, Arch. Ration. Mech. Anal., 203 (2012), 747-768. doi: 10.1007/s00205-011-0466-3. |
[40] | G. S. Weiss and G. Zhang, The second variation of the stream function energy of water waves with vorticity, J. Differ. Equ., 253 (2012), 2646-2656. doi: 10.1016/j.jde.2012.07.005. |
The free boundary meets the Dirichlet fixed boundary tangentially
The free boundary hits the point
Qualitative behavior of the free boundary near the fixed boundary