We discuss the stability problem for binary mixtures systems coupled with heat equations. The present manuscript covers the non-classical thermoelastic theories of Coleman-Gurtin and Gurtin-Pipkin - both theories overcome the property of infinite propagation speed (Fourier's law property). We first state the well-posedness and our main result is related to long-time behavior. More precisely, we show, under suitable hypotheses on the physical parameters, that the corresponding solution is stabilized to zero with exponential or rational rates.
Citation: |
[1] | J. E. Adkins, Non-linear diffusion, I. Diffusion and flow of mixtures of fluids, Philos. Trans. Roy. Soc. London A, 255 (1963), 607-633. doi: 10.1098/rsta.1963.0013. |
[2] | J. E. Adkins and R. E. Craine, Continuum Theories of Mixtures: Applications, IMA J. Appl. Math., 17 (1976), 153-207. |
[3] | M. S. Alves, J. E. Muñoz Rivera and R. Quintanilla, Exponential decay in a thermoelastic mixture of solids, Int. J. Solids Struct., 46 (2009), 1659-1666. doi: 10.1016/j.ijsolstr.2008.12.005. |
[4] | M. S. Alves, J. E. Muñoz Rivera, M. Sepúlveda and O. V. Villagrán, Exponential stability in thermoviscoelastic mixtures of solids, Int. J. Solids Struct., 46 (2009), 4151-4162. |
[5] | M. S. Alves, J. E. Muñoz Rivera, M. Sepúlveda and O. V. Villagrán, Analyticity of semigroups associated with thermoviscoelastic mixtures of solids, J. Therm. Stress., 32 (2009), 986-1004. |
[6] | M. S. Alves, M. V. Ferreira, J. E. Muñoz Rivera and O. V. Villagrán, Stability of a thermoelastic mixtures with second sound, Math. Mech. Solids, 24 (2019), 1692-1706. doi: 10.1177/1081286518775794. |
[7] | A. Bedford and D. S. Drumheller, Recent advances. Theories of immiscible and structured mixtures, Int. J. Engng. Sci., 21 (1983), 863-960. doi: 10.1016/0020-7225(83)90071-X. |
[8] | A. Bedford and M. A. Stern, A multi-continuum theory for composite elastic materials, Acta Mechanica, 14 (1972), 85-102. |
[9] | A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2009), 455-478. doi: 10.1007/s00208-009-0439-0. |
[10] | M. Coti Zelati, F. Dell'Oro and V. Pata, Energy decay of type III linear thermoelastic plates with memory, J. Math. Anal. Appl., 401 (2013), 357-366. doi: 10.1016/j.jmaa.2012.12.031. |
[11] | C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308. doi: 10.1007/BF00251609. |
[12] | S. Elangovan, B. S. Altan and G. M. Odegard, An elastic micropolar mixture theory for predicting elastic properties of cellular materials, Mech. Mater., 40 (2008), 602-615. |
[13] | J. R. Fernández, A. Magaña., M. Masid and R. Quintanilla, On the Viscoelastic Mixtures of Solids, Appl. Math. Optim., 79 (2019), 309-326. doi: 10.1007/s00245-017-9439-8. |
[14] | H. R. Gouin, Variational Theory of Mixtures in Continuum Mechanics, Eur. J. of Mech. B Fluids, 9 (1990), 469-491. |
[15] | M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory, in Evolution Equations, Semigroups and Functional Analysis (eds. A. Lorenzi and B. Ruf), Birkhäuser, Basel, (2002), 155–178. |
[16] | M. Grasselli, J. E. Muñoz Rivera and V. Pata, On the energy decay of the linear thermoelastic plate with memory, J. Math. Anal. Appl., 309 (2005), 1-14. doi: 10.1016/j.jmaa.2004.10.071. |
[17] | D. Ieşan and R. Quintanilla, A theory of porous thermoviscoelastic mixtures, J. Thermal Stresses, 30 (2007), 693-714. doi: 10.1080/01495730701212880. |
[18] | S. M. Klisch and J. C. Lot, A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression, J. Biomech. Eng., 122 (2000), 180-188. |
[19] | Z. Liu and S. Zheng, Semigroups Associated to Dissipative Systems, Chapman & Hall/CRC Boca Raton, 1999. |
[20] | F. Martinez and R. Quintanilla, Some qualitative results for the linear theory of binary mixtures of thermoelastic solids, Collect. Math., 46 (1995), 263-277. |
[21] | J. E. Muñoz Rivera, M. G. Naso and R. Quintanilla, Decay of solutions for a mixture of thermoelastic one dimensional solids, Comput. Math. Appl., 66 (2013), 41-55. doi: 10.1016/j.camwa.2013.03.022. |
[22] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1. |
[23] | J. Pruss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112. |
[24] | R. Quintanilla, Existence and exponential decay in the linear theory of viscoelastic mixtures, Eur. J. Mech. A Solids, 24 (2005), 311-324. doi: 10.1016/j.euromechsol.2004.11.008. |
[25] | C. Truesdell, In Continuum Mechanics II: The Rational Mechanics of Materials, Gordon & Breach, New York, 1965. |