• Previous Article
    Semilinear elliptic problems involving exponential critical growth in the half-space
  • CPAA Home
  • This Issue
  • Next Article
    Subsonic solutions to a shock diffraction problem by a convex cornered wedge for the pressure gradient system
October  2020, 19(10): 4921-4936. doi: 10.3934/cpaa.2020218

Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China

* Corresponding author

Received  December 2019 Revised  May 2020 Published  July 2020

Fund Project: The authors are supported in part by NSFC (11631002 and 11871102)

In this paper, we use the Perron method to prove the existence and uniqueness of the exterior problem for a kind of parabolic Monge-Ampère equation $ -u_t+\log\det D^2u = f(x) $ with prescribed asymptotic behavior at infinity, where $ f $ is asymptotically close to a radial function at infinity. We generalize the results of both the elliptic exterior problems and the parabolic interior problems for the Monge-Ampère equations.

Citation: Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218
References:
[1]

J. BaoH. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differ. Equ., 52 (2015), 39-63.  doi: 10.1007/s00526-013-0704-7.  Google Scholar

[2]

J. Bao, J. Xiong and Z. Zhou, Existence of entire solutions of Monge-Ampère equations with prescribed asymptotic behaviors, Calc. Var. Partial Differ. Equ., 58 (2019), Art. 193, 12 pp. doi: 10.1007/s00526-019-1639-4.  Google Scholar

[3]

L. Caffarelli, Interior $W^{2, p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math., (2) 131 (1990), no. 1, 135-150.  Google Scholar

[4]

L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Commun. Pure Appl. Math., 37 (1984), 369-402.  doi: 10.1002/cpa.3160370306.  Google Scholar

[5]

L. Caffarelli and Y. Li, An extension to a theorem of J$\ddot{o}$rgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549–583. doi: 10.1002/cpa.10067.  Google Scholar

[6]

K. Chou and X. Wang, A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. Henri Poincare Anal. Non Lineaire, 17 (2001), 733-751.  doi: 10.1016/S0294-1449(00)00053-6.  Google Scholar

[7]

M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

L. Dai, Exterior problems for a parabolic Monge-Ampère equation, Nonlinear Anal. Theory Meth. Appl., 100 (2014), 99-110.  doi: 10.1016/j.na.2014.01.011.  Google Scholar

[9]

L. FerrerA. Martínez and F. Mil$ \rm\acute{a} $n, An extension of a theorem by K. J$\ddot{o}$rgens and a maximum principle at infinity for parabolic affine spheres, Math. Z., 230 (1999), 471-486.  doi: 10.1007/PL00004700.  Google Scholar

[10]

L. FerrerA. Martínez and F. Mil$ \rm\acute{a} $n, The space of parabolic affine spheres with fixed compact boundary, Monatsh. Math., 130 (2000), 19-27.  doi: 10.1007/s006050050084.  Google Scholar

[11]

H. Ishii and P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Partial Differ. Equ., 83 (1990), 26-78.  Google Scholar

[12]

N. M. Ivochkina and O. A. Ladyzhenskaya, On parabolic equations generated by symmetric functions of the principal curvatures of the evolving surfacing, or of the eigenvalues of Hessian, part Ⅰ: parabolic Monge-Ampère equations, St. Petersburg Math. J., 6 (1994), 527-594.   Google Scholar

[13]

T. Jin and J. Xiong, Solutions of some Monge-Ampère equations with isolated and line singularities, Adv. Math, 289 (2016), 114-141.  doi: 10.1016/j.aim.2015.11.029.  Google Scholar

[14]

Y. Li and S. Lu, Existence and nonexistence to exterior Dirichlet problem for Monge Ampère equation, Calc. Var. Partial Differ. Equ., (2018), 57–161. doi: 10.1007/s00526-018-1428-5.  Google Scholar

[15]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996. doi: 10.1142/3302.  Google Scholar

[16]

J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math., 7 (1977), 345-364. doi: 10.1216/rmj-1977-7-2-345.  Google Scholar

[17]

R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.   Google Scholar

[18]

R. Wang and G. Wang, The Geometric Measure Theoretical Characterization of Viscosity Solutions to Parabolic Monge-Ampère Type Equation, J. Partial Differ. Equ., 6 (1993), 237-254.   Google Scholar

[19]

R. Wang and G. Wang, On another kind of parabolic Monge-Ampère equation: the existence, uniqueness and regularity of the viscosity solution, Northeast. Math. J., 10 (1994), 434-454.  doi: 10.13447/j.1674-5647.1994.04.002.  Google Scholar

[20]

Y. Zhan, Viscosity solutions of nonlinear degenerate parabolic equations and several applications, Ph.D thesis, University of Toronto (Canada), ProQuest LLC, Ann Arbor, MI, 2000.  Google Scholar

show all references

References:
[1]

J. BaoH. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differ. Equ., 52 (2015), 39-63.  doi: 10.1007/s00526-013-0704-7.  Google Scholar

[2]

J. Bao, J. Xiong and Z. Zhou, Existence of entire solutions of Monge-Ampère equations with prescribed asymptotic behaviors, Calc. Var. Partial Differ. Equ., 58 (2019), Art. 193, 12 pp. doi: 10.1007/s00526-019-1639-4.  Google Scholar

[3]

L. Caffarelli, Interior $W^{2, p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math., (2) 131 (1990), no. 1, 135-150.  Google Scholar

[4]

L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Commun. Pure Appl. Math., 37 (1984), 369-402.  doi: 10.1002/cpa.3160370306.  Google Scholar

[5]

L. Caffarelli and Y. Li, An extension to a theorem of J$\ddot{o}$rgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549–583. doi: 10.1002/cpa.10067.  Google Scholar

[6]

K. Chou and X. Wang, A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. Henri Poincare Anal. Non Lineaire, 17 (2001), 733-751.  doi: 10.1016/S0294-1449(00)00053-6.  Google Scholar

[7]

M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

L. Dai, Exterior problems for a parabolic Monge-Ampère equation, Nonlinear Anal. Theory Meth. Appl., 100 (2014), 99-110.  doi: 10.1016/j.na.2014.01.011.  Google Scholar

[9]

L. FerrerA. Martínez and F. Mil$ \rm\acute{a} $n, An extension of a theorem by K. J$\ddot{o}$rgens and a maximum principle at infinity for parabolic affine spheres, Math. Z., 230 (1999), 471-486.  doi: 10.1007/PL00004700.  Google Scholar

[10]

L. FerrerA. Martínez and F. Mil$ \rm\acute{a} $n, The space of parabolic affine spheres with fixed compact boundary, Monatsh. Math., 130 (2000), 19-27.  doi: 10.1007/s006050050084.  Google Scholar

[11]

H. Ishii and P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Partial Differ. Equ., 83 (1990), 26-78.  Google Scholar

[12]

N. M. Ivochkina and O. A. Ladyzhenskaya, On parabolic equations generated by symmetric functions of the principal curvatures of the evolving surfacing, or of the eigenvalues of Hessian, part Ⅰ: parabolic Monge-Ampère equations, St. Petersburg Math. J., 6 (1994), 527-594.   Google Scholar

[13]

T. Jin and J. Xiong, Solutions of some Monge-Ampère equations with isolated and line singularities, Adv. Math, 289 (2016), 114-141.  doi: 10.1016/j.aim.2015.11.029.  Google Scholar

[14]

Y. Li and S. Lu, Existence and nonexistence to exterior Dirichlet problem for Monge Ampère equation, Calc. Var. Partial Differ. Equ., (2018), 57–161. doi: 10.1007/s00526-018-1428-5.  Google Scholar

[15]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996. doi: 10.1142/3302.  Google Scholar

[16]

J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math., 7 (1977), 345-364. doi: 10.1216/rmj-1977-7-2-345.  Google Scholar

[17]

R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.   Google Scholar

[18]

R. Wang and G. Wang, The Geometric Measure Theoretical Characterization of Viscosity Solutions to Parabolic Monge-Ampère Type Equation, J. Partial Differ. Equ., 6 (1993), 237-254.   Google Scholar

[19]

R. Wang and G. Wang, On another kind of parabolic Monge-Ampère equation: the existence, uniqueness and regularity of the viscosity solution, Northeast. Math. J., 10 (1994), 434-454.  doi: 10.13447/j.1674-5647.1994.04.002.  Google Scholar

[20]

Y. Zhan, Viscosity solutions of nonlinear degenerate parabolic equations and several applications, Ph.D thesis, University of Toronto (Canada), ProQuest LLC, Ann Arbor, MI, 2000.  Google Scholar

[1]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[2]

Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237

[3]

Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015

[4]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[5]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[6]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[7]

Ziwei Zhou, Jiguang Bao, Bo Wang. A Liouville theorem of parabolic Monge-AmpÈre equations in half-space. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020331

[8]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[9]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[10]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[11]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[12]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[13]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[14]

Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002

[15]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[16]

Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060

[17]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[18]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[19]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[20]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (57)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]