-
Previous Article
Periodic solutions of an age-structured epidemic model with periodic infection rate
- CPAA Home
- This Issue
-
Next Article
Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation
Semilinear elliptic problems involving exponential critical growth in the half-space
1. | Universidade Federal da Paraíba, Departamento de Matemática, 58051-900, João Pessoa-PB, Brazil |
2. | Universidade de Brasília, Departamento de Matemática, 70910-900, Brasília-DF, Brazil |
$ \begin{cases} -\Delta u+h(x)|u|^{q-2}u = a(x) f(u), &\mbox{in } \mathbb{R}^2_+,\\ \dfrac{\partial u}{\partial \nu}+u = 0, &\mbox{on } \partial\mathbb{R}^2_+, \end{cases} $ |
$ a $ |
$ b $ |
$ f $ |
References:
[1] |
Adimurthi and Y. Yang,
An interpolation of Hardy inequality and Moser-Trudinger in $R^n$ and its applications, Int. Math. Res. Not., 13 (2010), 2394-2426.
doi: 10.1093/imrn/rnp194. |
[2] |
S. Alama and G. Tarantello,
Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.
doi: 10.1006/jfan.1996.0125. |
[3] |
H. Berestycki, I. Capuzzo Dolcetta and L. Nirenberg,
Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Meth. Nonlinear Anal., 4 (1994), 59-78.
doi: 10.12775/TMNA.1994.023. |
[4] |
D. M. Cao,
Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Commun. Partial Differ. Equ., 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[5] |
J. Chabrowski,
Elliptic variational problems with indefinite nonlinearities, Topol. Meth. Nonlinear Anal., 9 (1997), 221-231.
doi: 10.12775/TMNA.1997.010. |
[6] |
F. Cîrstea and V. Rǎdulescu,
Existence and non-existence results for a quasilinear problem with nonlinear boundary condition, J. Math. Anal. Appl., 244 (2000), 169-183.
doi: 10.1006/jmaa.1999.6699. |
[7] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf,
Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equ., 4 (1995), 139-153.
doi: 10.1007/BF01205003. |
[8] |
A. Dillon, P. K. Maini and H. G. Othmer,
Pattern formation in generalized Turing systems, I. Steady-state patterns in systems with mixed boundary conditions, J. Math. Biol., 32 (1994), 345-393.
doi: 10.1007/BF00160165. |
[9] |
J. M. B. do Ó, F. Sani and J. Zhang,
Stationary nonlinear Schrödinger equations in $\mathbb{R}^2$ with potentials vanishing at infinity, Ann. Mat. Pura Appl., 196 (2017), 363-393.
doi: 10.1007/s10231-016-0576-5. |
[10] |
R. Filippucci, P. Pucci and V. Rǎdulescu,
Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Commun. Partial Differ. Equ., 33 (2008), 706-717.
doi: 10.1080/03605300701518208. |
[11] |
M. Guzmán, Differentiation of Integrals in $\mathbb{R}^2$, in Lecture Notes in Mathematics, Vol. 481, Springer, Berlin, 1975. |
[12] |
Y. Li and B. Ruf,
A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^n$, Indiana Univ. Math. J., 57 (2008), 451-480.
doi: 10.1512/iumj.2008.57.3137. |
[13] |
B. Opic and A. Kufner, Hardy-type inequalities, in Pitman Research Notes in Mathematics Series, Vol. 219, Longman Scientific and Technical, Harlow, 1990. |
[14] |
K. Pflüger,
Compact traces in weighted Sobolev spaces, Analysis, 18 (1998), 65-83.
doi: 10.1524/anly.1998.18.1.65. |
[15] |
K. Pflüger,
Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. Differ. Equ., 10 (1998), 1-13.
|
[16] |
V. Rǎdulescu and D. Repovš,
Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524-1530.
doi: 10.1016/j.na.2011.01.037. |
[17] |
J. Simon, Regularité de la solution d'une equation non lineaire dans $\mathbb{R}^2$, in Lecture Notes in Mathematics, Vol. 665, Springer, Heidelberg, 1978. |
[18] |
Y. Yang,
Trudinger-Moser inequalities on complete noncompact Riemannian manifolds, J. Funct. Anal., 263 (2012), 1894-1938.
doi: 10.1016/j.jfa.2012.06.019. |
[19] |
Y. Yang and X. Zhu,
A new proof of subcritical Trudinger-Moser inequalities on the whole Euclidean space, J. Partial Differ. Equ., 26 (2013), 300-304.
|
[20] |
J. Zhang, S. Li and X. Xue,
Multiple solutions for a class of semilinear elliptic problems with Robin boundary condition, J. Math. Anal. Appl., 388 (2012), 435-442.
doi: 10.1016/j.jmaa.2011.09.066. |
show all references
References:
[1] |
Adimurthi and Y. Yang,
An interpolation of Hardy inequality and Moser-Trudinger in $R^n$ and its applications, Int. Math. Res. Not., 13 (2010), 2394-2426.
doi: 10.1093/imrn/rnp194. |
[2] |
S. Alama and G. Tarantello,
Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.
doi: 10.1006/jfan.1996.0125. |
[3] |
H. Berestycki, I. Capuzzo Dolcetta and L. Nirenberg,
Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Meth. Nonlinear Anal., 4 (1994), 59-78.
doi: 10.12775/TMNA.1994.023. |
[4] |
D. M. Cao,
Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Commun. Partial Differ. Equ., 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[5] |
J. Chabrowski,
Elliptic variational problems with indefinite nonlinearities, Topol. Meth. Nonlinear Anal., 9 (1997), 221-231.
doi: 10.12775/TMNA.1997.010. |
[6] |
F. Cîrstea and V. Rǎdulescu,
Existence and non-existence results for a quasilinear problem with nonlinear boundary condition, J. Math. Anal. Appl., 244 (2000), 169-183.
doi: 10.1006/jmaa.1999.6699. |
[7] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf,
Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equ., 4 (1995), 139-153.
doi: 10.1007/BF01205003. |
[8] |
A. Dillon, P. K. Maini and H. G. Othmer,
Pattern formation in generalized Turing systems, I. Steady-state patterns in systems with mixed boundary conditions, J. Math. Biol., 32 (1994), 345-393.
doi: 10.1007/BF00160165. |
[9] |
J. M. B. do Ó, F. Sani and J. Zhang,
Stationary nonlinear Schrödinger equations in $\mathbb{R}^2$ with potentials vanishing at infinity, Ann. Mat. Pura Appl., 196 (2017), 363-393.
doi: 10.1007/s10231-016-0576-5. |
[10] |
R. Filippucci, P. Pucci and V. Rǎdulescu,
Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Commun. Partial Differ. Equ., 33 (2008), 706-717.
doi: 10.1080/03605300701518208. |
[11] |
M. Guzmán, Differentiation of Integrals in $\mathbb{R}^2$, in Lecture Notes in Mathematics, Vol. 481, Springer, Berlin, 1975. |
[12] |
Y. Li and B. Ruf,
A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^n$, Indiana Univ. Math. J., 57 (2008), 451-480.
doi: 10.1512/iumj.2008.57.3137. |
[13] |
B. Opic and A. Kufner, Hardy-type inequalities, in Pitman Research Notes in Mathematics Series, Vol. 219, Longman Scientific and Technical, Harlow, 1990. |
[14] |
K. Pflüger,
Compact traces in weighted Sobolev spaces, Analysis, 18 (1998), 65-83.
doi: 10.1524/anly.1998.18.1.65. |
[15] |
K. Pflüger,
Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. Differ. Equ., 10 (1998), 1-13.
|
[16] |
V. Rǎdulescu and D. Repovš,
Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524-1530.
doi: 10.1016/j.na.2011.01.037. |
[17] |
J. Simon, Regularité de la solution d'une equation non lineaire dans $\mathbb{R}^2$, in Lecture Notes in Mathematics, Vol. 665, Springer, Heidelberg, 1978. |
[18] |
Y. Yang,
Trudinger-Moser inequalities on complete noncompact Riemannian manifolds, J. Funct. Anal., 263 (2012), 1894-1938.
doi: 10.1016/j.jfa.2012.06.019. |
[19] |
Y. Yang and X. Zhu,
A new proof of subcritical Trudinger-Moser inequalities on the whole Euclidean space, J. Partial Differ. Equ., 26 (2013), 300-304.
|
[20] |
J. Zhang, S. Li and X. Xue,
Multiple solutions for a class of semilinear elliptic problems with Robin boundary condition, J. Math. Anal. Appl., 388 (2012), 435-442.
doi: 10.1016/j.jmaa.2011.09.066. |
[1] |
Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1721-1735. doi: 10.3934/cpaa.2021038 |
[2] |
Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1221-1234. doi: 10.3934/cpaa.2010.9.1221 |
[3] |
Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic and Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001 |
[4] |
Xiaofei Cao, Guowei Dai. Stability analysis of a model on varying domain with the Robin boundary condition. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 935-942. doi: 10.3934/dcdss.2017048 |
[5] |
Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609 |
[6] |
Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505 |
[7] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[8] |
Sami Aouaoui, Rahma Jlel. Singular weighted sharp Trudinger-Moser inequalities defined on $ \mathbb{R}^N $ and applications to elliptic nonlinear equations. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 781-813. doi: 10.3934/dcds.2021137 |
[9] |
Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378 |
[10] |
Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure and Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006 |
[11] |
Jaeyoung Byeon, Sangdon Jin. The Hénon equation with a critical exponent under the Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4353-4390. doi: 10.3934/dcds.2018190 |
[12] |
Kei Fong Lam, Hao Wu. Convergence to equilibrium for a bulk–surface Allen–Cahn system coupled through a nonlinear Robin boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1847-1878. doi: 10.3934/dcds.2020096 |
[13] |
Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393 |
[14] |
VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 |
[15] |
Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations and Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325 |
[16] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452 |
[17] |
Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455 |
[18] |
Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031 |
[19] |
Shengbing Deng, Xingliang Tian. On a nonhomogeneous Kirchhoff type elliptic system with the singular Trudinger-Moser growth. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022071 |
[20] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]