• Previous Article
    A new family of boundary-domain integral equations for the diffusion equation with variable coefficient in unbounded domains
  • CPAA Home
  • This Issue
  • Next Article
    Existence and concentration of nodal solutions for a subcritical p&q equation
doi: 10.3934/cpaa.2020221

Non-linear bi-harmonic Choquard equations

Department of Mathematics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah, Kingdom of Saudi Arabia

Received  January 2020 Revised  April 2020 Published  July 2020

This note studies the fourth-order Choquard equation
$ i\dot u+\Delta^2 u\pm (I_\alpha *|u|^p)|u|^{p-2}u = 0 . $
In the mass super-critical and energy sub-critical regimes, a sharp threshold of global well-psedness and scattering versus finite time blow-up dichotomy is obtained.
Citation: Tarek Saanouni. Non-linear bi-harmonic Choquard equations. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020221
References:
[1]

T. Boulenger and E. Lenzmann, Blow-up for bi-harmonic NLS, Ann. Sci. Éc. Norm. Supér., 50 (2017), 503-544.  doi: 10.24033/asens.2326.  Google Scholar

[2]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009), 355-365.  doi: 10.1142/S0219199709003399.  Google Scholar

[3]

M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[4]

P. d'AveniaG. Siciliano and M. Squassina, On fractional Choquard equations, Math. Model. Meth. Appl. Sci., 25 (2015), 1447-1476.  doi: 10.1142/S0218202515500384.  Google Scholar

[5]

T. Duyckaerts and S. Roudenko, Going beyond the threshold: scattering and blow-up in the focusing NLS equation, Commun. Math. Phys., 334 (2015), 1573-1615.  doi: 10.1007/s00220-014-2202-y.  Google Scholar

[6]

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2007), 500-545.  doi: 10.1002/cpa.20134.  Google Scholar

[7]

B. Feng and X. Yuan, On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431-445.  doi: 10.3934/eect.2015.4.431.  Google Scholar

[8]

B. Feng and H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352-364.  doi: 10.1016/j.jmaa.2017.11.060.  Google Scholar

[9]

E. P. Gross and E. Meeron, Physics of many-particle systems, Vol. 1, Gordon Breach, New York, (1966), 231–406.  Google Scholar

[10]

C. D. Guevara, Global behavior of finite energy solutions to the d-Dimensional focusing non-linear Schrödinger equation, Appl. Math. Res. eXpress., 2 (2014), 177-243.  doi: 10.1002/cta.2381.  Google Scholar

[11]

Q. Guo, Scattering for the focusing $L^2$-supercritical and $\dot H^2$-subcritical bi-harmonic NLS equations, Commun. Partial Differ. Equ., 41 (2016), 185-207.  doi: 10.1080/03605302.2015.1116556.  Google Scholar

[12]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth-order non-linear Schrödinger equation, Phys. Rev. E, 53 (1996), 1336-1339.  doi: 10.1016/0375-9601(95)00752-0.  Google Scholar

[13]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by non-linear Schrödinger type equations with higher-order dispersion, Phys. D, 144 (2000), 194-210.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[14]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[15]

S. Le Coz, A note on Berestycki-Cazenave classical instability result for non-linear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463.  doi: 10.1515/ans-2008-0302.  Google Scholar

[16]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64.  doi: 10.1007/s11040-007-9020-9.  Google Scholar

[17]

M. Lewin and N. Rougerie, Derivation of Pekar's polarons from a microscopic model of quantum crystal, SIAM J. Math. Anal., 45 (2013), 1267-1301.  doi: 10.1137/110846312.  Google Scholar

[18]

E. Lieb, Analysis, 2nd ed., Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, RI, 2001.  Google Scholar

[19]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.  Google Scholar

[20]

V. Moroz and J. V. Schaftingen, Groundstates of non-linear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[21]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 13 (1955), 116-162.   Google Scholar

[22]

T. Saanouni, A note on the fractional Schrödinger equation of Choquard type, J. Math. Anal. Appl., 470 (2019), 1004-1029.  doi: 10.1016/j.jmaa.2018.10.045.  Google Scholar

[23]

T. Saanouni, Scattering threshold for the focusing Choquard equation, Nonlinear Differ. Equ. Appl., 26, (2019), Art. 41. doi: 10.1007/s00030-019-0587-1.  Google Scholar

[24]

R. J. Taggart, Inhomogeneous Strichartz estimates, Forum Math., 22 (2010), 825-853.  doi: 10.1515/FORUM.2010.044.  Google Scholar

show all references

References:
[1]

T. Boulenger and E. Lenzmann, Blow-up for bi-harmonic NLS, Ann. Sci. Éc. Norm. Supér., 50 (2017), 503-544.  doi: 10.24033/asens.2326.  Google Scholar

[2]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009), 355-365.  doi: 10.1142/S0219199709003399.  Google Scholar

[3]

M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[4]

P. d'AveniaG. Siciliano and M. Squassina, On fractional Choquard equations, Math. Model. Meth. Appl. Sci., 25 (2015), 1447-1476.  doi: 10.1142/S0218202515500384.  Google Scholar

[5]

T. Duyckaerts and S. Roudenko, Going beyond the threshold: scattering and blow-up in the focusing NLS equation, Commun. Math. Phys., 334 (2015), 1573-1615.  doi: 10.1007/s00220-014-2202-y.  Google Scholar

[6]

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2007), 500-545.  doi: 10.1002/cpa.20134.  Google Scholar

[7]

B. Feng and X. Yuan, On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431-445.  doi: 10.3934/eect.2015.4.431.  Google Scholar

[8]

B. Feng and H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352-364.  doi: 10.1016/j.jmaa.2017.11.060.  Google Scholar

[9]

E. P. Gross and E. Meeron, Physics of many-particle systems, Vol. 1, Gordon Breach, New York, (1966), 231–406.  Google Scholar

[10]

C. D. Guevara, Global behavior of finite energy solutions to the d-Dimensional focusing non-linear Schrödinger equation, Appl. Math. Res. eXpress., 2 (2014), 177-243.  doi: 10.1002/cta.2381.  Google Scholar

[11]

Q. Guo, Scattering for the focusing $L^2$-supercritical and $\dot H^2$-subcritical bi-harmonic NLS equations, Commun. Partial Differ. Equ., 41 (2016), 185-207.  doi: 10.1080/03605302.2015.1116556.  Google Scholar

[12]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth-order non-linear Schrödinger equation, Phys. Rev. E, 53 (1996), 1336-1339.  doi: 10.1016/0375-9601(95)00752-0.  Google Scholar

[13]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by non-linear Schrödinger type equations with higher-order dispersion, Phys. D, 144 (2000), 194-210.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[14]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[15]

S. Le Coz, A note on Berestycki-Cazenave classical instability result for non-linear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463.  doi: 10.1515/ans-2008-0302.  Google Scholar

[16]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64.  doi: 10.1007/s11040-007-9020-9.  Google Scholar

[17]

M. Lewin and N. Rougerie, Derivation of Pekar's polarons from a microscopic model of quantum crystal, SIAM J. Math. Anal., 45 (2013), 1267-1301.  doi: 10.1137/110846312.  Google Scholar

[18]

E. Lieb, Analysis, 2nd ed., Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, RI, 2001.  Google Scholar

[19]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.  Google Scholar

[20]

V. Moroz and J. V. Schaftingen, Groundstates of non-linear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[21]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 13 (1955), 116-162.   Google Scholar

[22]

T. Saanouni, A note on the fractional Schrödinger equation of Choquard type, J. Math. Anal. Appl., 470 (2019), 1004-1029.  doi: 10.1016/j.jmaa.2018.10.045.  Google Scholar

[23]

T. Saanouni, Scattering threshold for the focusing Choquard equation, Nonlinear Differ. Equ. Appl., 26, (2019), Art. 41. doi: 10.1007/s00030-019-0587-1.  Google Scholar

[24]

R. J. Taggart, Inhomogeneous Strichartz estimates, Forum Math., 22 (2010), 825-853.  doi: 10.1515/FORUM.2010.044.  Google Scholar

[1]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

[2]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[3]

Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677

[4]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[5]

Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117

[6]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[7]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[8]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[9]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[10]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[11]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[12]

Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037

[13]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[14]

Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729

[15]

Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077

[16]

Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043

[17]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[18]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[19]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[20]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (44)
  • HTML views (36)
  • Cited by (0)

Other articles
by authors

[Back to Top]