• Previous Article
    Nonlinear stability of periodic-wave solutions for systems of dispersive equations
  • CPAA Home
  • This Issue
  • Next Article
    Mass concentration phenomenon to the two-dimensional Cauchy problem of the compressible Magnetohydrodynamic equations
October  2020, 19(10): 4995-5013. doi: 10.3934/cpaa.2020224

Longtime dynamics for a type of suspension bridge equation with past history and time delay

1. 

College of Science, Henan University of Technology, Zhengzhou 450001, China

2. 

Department of Economic Mathematics, Southwestern University of Finance and Economics, , Chengdu, 611130, China

3. 

College of Mathematics and Information Science Henan Normal University, Xinxiang 453007, China

* Corresponding author

Received  February 2020 Revised  May 2020 Published  July 2020

Fund Project: Gongwei Liu is partially supported by NSFC (No. 11801145), Key Scientific Research Foundation of the Higher Education Institutions of Henan Province, China (No.19A110004) and the Fund of Young Backbone Teacher in Henan Province (No.2018GGJS068). Baowei Feng is partially supported by NSFC (No. 11701465). Xinguang Yang is partially supported by the Fund of Young Backbone Teacher in Henan Province (No.2018GGJS039)

In this paper, we investigate a suspension bridge equation with past history and time delay effects, defined in a bounded domain $ \Omega $ of $ \mathbb{R}^N $. Many researchers have considered the well-posedness, energy decay of solution and existence of global attractors for suspension bridge equation without memory or delay. But as far as we know, there are no results on the suspension bridge equation with both memory and time delay. The purpose of this paper is to show the existence of a global attractor which has finite fractal dimension by using the methods developed by Chueshov and Lasiecka. Result on exponential attractors is also proved. We also establish the exponential stability under some conditions. These results are extension and improvement of earlier results.

Citation: Gongwei Liu, Baowei Feng, Xinguang Yang. Longtime dynamics for a type of suspension bridge equation with past history and time delay. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4995-5013. doi: 10.3934/cpaa.2020224
References:
[1]

Y. An, On the suspension bridge equations and the relevant problems, Ph.D thesis, 2001.

[2]

R. O. AraújoT. F. Ma and Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differ. Equ., 254 (2013), 4066-4087.  doi: 10.1016/j.jde.2013.02.010.

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Amsterdam, North-Holland, 1992.

[4]

A. R. A. Barbosa and T. F. Ma, long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143-165.  doi: 10.1016/j.jmaa.2014.02.042.

[5]

I. D. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monogr. Math., Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.

[6]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[7]

Q. Dai and Z. Yang, Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 65 (2014), 885-903.  doi: 10.1007/s00033-013-0365-6.

[8]

B. Feng and X. Yang, Long-term dynamics for a nonlinear Timoshenko system with delay, Appl. Anal., 96 (2017), 606-625.  doi: 10.1080/00036811.2016.1148139.

[9]

B. Feng, On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors, Discrete Contin. Dyn. Syst., 37 (2017), 4729-4751.  doi: 10.3934/dcds.2017203.

[10]

J. R. Kang, Long-time behavior of a suspension bridge equations with past history, Appl. Math. Comput., 265 (2015), 509-519.  doi: 10.1016/j.amc.2015.04.116.

[11]

J. R. Kang, Global attractor for suspension bridge equations with memeory, Math. Meth. Appl. Sci., 39 (2016), 762-775.  doi: 10.1002/mma.3520.

[12]

M. Kirane and B. Said Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.

[13]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridge: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.  doi: 10.1137/1032120.

[14]

G. Liu and H. Zhang, Well-posedness for a class of wave equation with past history and a delay, Z. Angew. Math. Phys., 67 (2016), 1-14.  doi: 10.1007/s00033-015-0593-z.

[15]

G. LiuH. Yue and H. Zhang, Long time behavior for a wave equation with time delay, Taiwan. J. Math., 27 (2017), 2017-129.  doi: 10.11650/tjm.21.2017.7246.

[16]

Q. Z. Ma and C. K. Zhong, Existence of global attractors for the suspension bridge equations, J. Sichuan Univ., 43 (2006), 271-276. 

[17]

Q. Z. Ma and C. K. Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations, J. Differ. Equ., 246 (2009), 3755-3775.  doi: 10.1016/j.jde.2009.02.022.

[18]

P. J. McKenna and W. Walter, Nonlinear oscillation in a suspension bridge, Nonlinear Anal., 39 (2000), 731-743. 

[19]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differ. Equ., 41 (2011), 1-20. 

[20]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.

[21]

J. Y. Park and J. R. Kang, Pullback D-attractors for non-autonomous suspension bridge equations, Nonlinear Anal., 71 (2009), 4618-4623.  doi: 10.1016/j.na.2009.03.025.

[22]

J. Y. Park and J. R. Kang, Global attractors for the suspension bridge equations with nonlinear damping, Q. Appl. Math., 69 (2011), 465-475.  doi: 10.1090/S0033-569X-2011-01259-1.

[23]

S. H. Park, Long-time behavior for suspension bridge equations with time delay, Z. Angew. Math. Phys., 69 (2018), Art. 45. doi: 10.1007/s00033-018-0934-9.

[24]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.

[25]

Z. Yang, Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay, Z. Angew. Math. Phys., 66 (2015), 727-745.  doi: 10.1007/s00033-014-0429-2.

[26]

C. K. ZhongQ. Z. Ma and C. Y. Sun, Existence of strong solutions and global attractors for the suspension bridge equations, Nonlinear Anal., 67 (2007), 442-454.  doi: 10.1016/j.na.2006.05.018.

show all references

References:
[1]

Y. An, On the suspension bridge equations and the relevant problems, Ph.D thesis, 2001.

[2]

R. O. AraújoT. F. Ma and Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differ. Equ., 254 (2013), 4066-4087.  doi: 10.1016/j.jde.2013.02.010.

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Amsterdam, North-Holland, 1992.

[4]

A. R. A. Barbosa and T. F. Ma, long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143-165.  doi: 10.1016/j.jmaa.2014.02.042.

[5]

I. D. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monogr. Math., Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.

[6]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[7]

Q. Dai and Z. Yang, Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 65 (2014), 885-903.  doi: 10.1007/s00033-013-0365-6.

[8]

B. Feng and X. Yang, Long-term dynamics for a nonlinear Timoshenko system with delay, Appl. Anal., 96 (2017), 606-625.  doi: 10.1080/00036811.2016.1148139.

[9]

B. Feng, On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors, Discrete Contin. Dyn. Syst., 37 (2017), 4729-4751.  doi: 10.3934/dcds.2017203.

[10]

J. R. Kang, Long-time behavior of a suspension bridge equations with past history, Appl. Math. Comput., 265 (2015), 509-519.  doi: 10.1016/j.amc.2015.04.116.

[11]

J. R. Kang, Global attractor for suspension bridge equations with memeory, Math. Meth. Appl. Sci., 39 (2016), 762-775.  doi: 10.1002/mma.3520.

[12]

M. Kirane and B. Said Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.

[13]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridge: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.  doi: 10.1137/1032120.

[14]

G. Liu and H. Zhang, Well-posedness for a class of wave equation with past history and a delay, Z. Angew. Math. Phys., 67 (2016), 1-14.  doi: 10.1007/s00033-015-0593-z.

[15]

G. LiuH. Yue and H. Zhang, Long time behavior for a wave equation with time delay, Taiwan. J. Math., 27 (2017), 2017-129.  doi: 10.11650/tjm.21.2017.7246.

[16]

Q. Z. Ma and C. K. Zhong, Existence of global attractors for the suspension bridge equations, J. Sichuan Univ., 43 (2006), 271-276. 

[17]

Q. Z. Ma and C. K. Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations, J. Differ. Equ., 246 (2009), 3755-3775.  doi: 10.1016/j.jde.2009.02.022.

[18]

P. J. McKenna and W. Walter, Nonlinear oscillation in a suspension bridge, Nonlinear Anal., 39 (2000), 731-743. 

[19]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differ. Equ., 41 (2011), 1-20. 

[20]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.

[21]

J. Y. Park and J. R. Kang, Pullback D-attractors for non-autonomous suspension bridge equations, Nonlinear Anal., 71 (2009), 4618-4623.  doi: 10.1016/j.na.2009.03.025.

[22]

J. Y. Park and J. R. Kang, Global attractors for the suspension bridge equations with nonlinear damping, Q. Appl. Math., 69 (2011), 465-475.  doi: 10.1090/S0033-569X-2011-01259-1.

[23]

S. H. Park, Long-time behavior for suspension bridge equations with time delay, Z. Angew. Math. Phys., 69 (2018), Art. 45. doi: 10.1007/s00033-018-0934-9.

[24]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.

[25]

Z. Yang, Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay, Z. Angew. Math. Phys., 66 (2015), 727-745.  doi: 10.1007/s00033-014-0429-2.

[26]

C. K. ZhongQ. Z. Ma and C. Y. Sun, Existence of strong solutions and global attractors for the suspension bridge equations, Nonlinear Anal., 67 (2007), 442-454.  doi: 10.1016/j.na.2006.05.018.

[1]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[2]

Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1299-1316. doi: 10.3934/dcdsb.2019221

[3]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (11) : 6323-6351. doi: 10.3934/dcdsb.2021318

[4]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115

[5]

Ivana Bochicchio, Claudio Giorgi, Elena Vuk. On the viscoelastic coupled suspension bridge. Evolution Equations and Control Theory, 2014, 3 (3) : 373-397. doi: 10.3934/eect.2014.3.373

[6]

Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022, 27 (12) : 7351-7372. doi: 10.3934/dcdsb.2022046

[7]

Zayd Hajjej, Mohammad Al-Gharabli, Salim Messaoudi. Stability of a suspension bridge with a localized structural damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1165-1181. doi: 10.3934/dcdss.2021089

[8]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[9]

Marco Campo, José R. Fernández, Maria Grazia Naso. A dynamic problem involving a coupled suspension bridge system: Numerical analysis and computational experiments. Evolution Equations and Control Theory, 2019, 8 (3) : 489-502. doi: 10.3934/eect.2019024

[10]

Quang-Minh Tran, Hong-Danh Pham. Global existence and blow-up results for a nonlinear model for a dynamic suspension bridge. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4521-4550. doi: 10.3934/dcdss.2021135

[11]

Xin-Guang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1493-1515. doi: 10.3934/dcds.2020084

[12]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[13]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial and Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[14]

Xudong Luo, Qiaozhen Ma. The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 4817-4835. doi: 10.3934/dcdsb.2021253

[15]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[16]

Eugenio Sinestrari. Wave equation with memory. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 881-896. doi: 10.3934/dcds.1999.5.881

[17]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[18]

José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a non-linear parabolic equation modelling suspension flows. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 205-231. doi: 10.3934/dcdsb.2009.11.205

[19]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[20]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (325)
  • HTML views (60)
  • Cited by (0)

Other articles
by authors

[Back to Top]