doi: 10.3934/cpaa.2020227

Existence and concentration of nodal solutions for a subcritical p&q equation

Departamento de Matemática - Universidade de Brasília, 70.910-900, Brasília - DF, Brazil

* Corresponding author

Received  February 2020 Revised  May 2020 Published  July 2020

Fund Project: Gustavo S. Costa and Giovany M. Figueiredo were partially supported by CNPq, Capes and Fapesp - Brazil

In this paper we prove existence and concentration results for a family of nodal solutions for a some quasilinear equation with subcritical growth, whose prototype is
$ -\Delta_{p}u- \Delta_{q}u+V( x)(|u|^{p-2}u+|u|^{q-2}u) = f(u) \quad \mbox{in} \ \mathbb{R}^{N}. $
Each nodal solution changes sign exactly once in
$ \mathbb{R}^{N} $
and has an exponential decay at infinity. Here we use variational methods and Del Pino and Felmer's technique [10] in order to overcome the lack of compactness.
Citation: Gustavo S. Costa, Giovany M. Figueiredo. Existence and concentration of nodal solutions for a subcritical p&q equation. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020227
References:
[1]

C. O. Alves and M. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153–1166. doi: 10.1007/s00033-013-0376-3.  Google Scholar

[2]

C. O. Alves and G. M. Figueiredo, Multiplicity of positive solutions for a quasilinear problem in $I\!\!R^{N}$ via penalization method, Adv. Nonlinear Stud., 5 (2005), 551-572. doi: 10.1515/ans-2005-0405.  Google Scholar

[3]

C. O. Alves and S. H. M. Soares, On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations., J. Math. Anal. Appl., 296 (2004), 563-577.  doi: 10.1016/j.jmaa.2004.04.022.  Google Scholar

[4]

C. O. Alves and S. H. M. Soares, Nodal solutions for singularly perturbed equations with critical exponential growth, J. Differ. Equ., 234 (2007), 464-484.  doi: 10.1016/j.jde.2006.12.006.  Google Scholar

[5]

C. O. Alves and G. M. .Figueiredo, Multiplicity and Concentration of Positive Solutions for a Class of Quasilinear Problems., Adv. Nonlinear Stud., 11 (2011), 265-295.  doi: 10.1515/ans-2011-0203.  Google Scholar

[6]

C. O. Alves and G. M. .Figueiredo, Existence and concentration of nodal solutions to a class of quasilinear problems, Topol. Method. Nonl. Anal., 29 (2007), 279-293.   Google Scholar

[7]

S. Barile and G. M. Figueiredo, Existence of least energy positive, negative and nodal solutions for a class of $p$ & $q$-problems, J. Math. Anal. Appl., 427 (2015), 1205-1233.  doi: 10.1016/j.jmaa.2015.02.086.  Google Scholar

[8]

T. BartschT. Weth and M. Willem, Partial symmetry of least energy nodal solution to some variational problems, J. Anal. Math., 96 (2005), 1-18.  doi: 10.1007/BF02787822.  Google Scholar

[9]

A. Castro, J. Cossio and J. Neuberger, A sign-changing solution for a super linear Dirichlet problem, Rocky Mt. J. Math., 27 (1997), 1041-1053. doi: 10.1216/rmjm/1181071858.  Google Scholar

[10]

M. Del Pino and P. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. equ., 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[11]

E. Di Benedetto E, $C^{1, \alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1985), 827-850.  doi: 10.1016/0362-546X(83)90061-5.  Google Scholar

[12]

Y. Deng and W. Shuai, Existence and concentration behavior of sign-changing solutions for quasilinear Schrödinger equations, Sci. China Math., 59 (2016), 1095-1112.   Google Scholar

[13]

G. M. Figueiredo, Existence of positive solutions for a class of p & q elliptic problems with critical growth on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 378 (2011), 507-518.  doi: 10.1016/j.jmaa.2011.02.017.  Google Scholar

[14]

G. M. Figueiredo and M. T. O. Pimenta, Nodal solutions of an NLS equation concentrating on lower dimensional spheres, Bound. Value Probl., 168 (2015), 19pp. doi: 10.1186/s13661-015-0411-8.  Google Scholar

[15]

N. S. Papageorgiou, C. Vetro and F. Vetro, Multiple solutions for parametric double phase Dirichlet problems, Commun. Contemp. Math., (2020), 18pp. doi: 10.1142/S0219199720500066.  Google Scholar

[16]

N. S. PapageorgiouC. Vetro and F. Vetro, Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential, J. Differ. Equ., 268 (2020), 4102-4118.  doi: 10.1016/j.jde.2019.10.026.  Google Scholar

[17]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.  Google Scholar

[18]

Y. Sato, Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency, Commun. Pure. Appl. Anal., 7 (2008), 883-903.  doi: 10.3934/cpaa.2008.7.883.  Google Scholar

[19]

C. Vetro, An elliptic equation on n-dimensional manifolds, Complex Var. Elliptic, (2020), 17pp. doi: 10.1080/17476933.2020.1711745.  Google Scholar

[20]

C. Vetro, Parametric and nonparametric A-Laplace problems: Existence of solutions and asymptotic analysis, Asymptot. Anal., (2020), 14pp. Google Scholar

[21]

C. Vetro, Pairs of nontrivial smooth solutions for nonlinear Neumann problems, Appl. Math. Lett., 103 (2020), 1-7.  doi: 10.1016/j.aml.2019.106171.  Google Scholar

[22]

C. Vetro, Semilinear Robin problems driven by the Laplacian plus an indefinite potential, Complex Var. Elliptic, 65 (2020), 573-587.  doi: 10.1080/17476933.2019.1597066.  Google Scholar

[23]

C. Vetro and F. Vetro, On problems driven by the (p(·), q(·))-Laplace operator, Mediterr. J. Math, 17 (2019), 1-11.   Google Scholar

[24]

X. Wang, On concentration of positive bound states of nonlinear Schr$\ddot{o}$dinger equations, Commun. Math. Phys., 53 (1993), 229-244.   Google Scholar

[25]

M. Willem, Minimax theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

References:
[1]

C. O. Alves and M. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153–1166. doi: 10.1007/s00033-013-0376-3.  Google Scholar

[2]

C. O. Alves and G. M. Figueiredo, Multiplicity of positive solutions for a quasilinear problem in $I\!\!R^{N}$ via penalization method, Adv. Nonlinear Stud., 5 (2005), 551-572. doi: 10.1515/ans-2005-0405.  Google Scholar

[3]

C. O. Alves and S. H. M. Soares, On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations., J. Math. Anal. Appl., 296 (2004), 563-577.  doi: 10.1016/j.jmaa.2004.04.022.  Google Scholar

[4]

C. O. Alves and S. H. M. Soares, Nodal solutions for singularly perturbed equations with critical exponential growth, J. Differ. Equ., 234 (2007), 464-484.  doi: 10.1016/j.jde.2006.12.006.  Google Scholar

[5]

C. O. Alves and G. M. .Figueiredo, Multiplicity and Concentration of Positive Solutions for a Class of Quasilinear Problems., Adv. Nonlinear Stud., 11 (2011), 265-295.  doi: 10.1515/ans-2011-0203.  Google Scholar

[6]

C. O. Alves and G. M. .Figueiredo, Existence and concentration of nodal solutions to a class of quasilinear problems, Topol. Method. Nonl. Anal., 29 (2007), 279-293.   Google Scholar

[7]

S. Barile and G. M. Figueiredo, Existence of least energy positive, negative and nodal solutions for a class of $p$ & $q$-problems, J. Math. Anal. Appl., 427 (2015), 1205-1233.  doi: 10.1016/j.jmaa.2015.02.086.  Google Scholar

[8]

T. BartschT. Weth and M. Willem, Partial symmetry of least energy nodal solution to some variational problems, J. Anal. Math., 96 (2005), 1-18.  doi: 10.1007/BF02787822.  Google Scholar

[9]

A. Castro, J. Cossio and J. Neuberger, A sign-changing solution for a super linear Dirichlet problem, Rocky Mt. J. Math., 27 (1997), 1041-1053. doi: 10.1216/rmjm/1181071858.  Google Scholar

[10]

M. Del Pino and P. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. equ., 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[11]

E. Di Benedetto E, $C^{1, \alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1985), 827-850.  doi: 10.1016/0362-546X(83)90061-5.  Google Scholar

[12]

Y. Deng and W. Shuai, Existence and concentration behavior of sign-changing solutions for quasilinear Schrödinger equations, Sci. China Math., 59 (2016), 1095-1112.   Google Scholar

[13]

G. M. Figueiredo, Existence of positive solutions for a class of p & q elliptic problems with critical growth on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 378 (2011), 507-518.  doi: 10.1016/j.jmaa.2011.02.017.  Google Scholar

[14]

G. M. Figueiredo and M. T. O. Pimenta, Nodal solutions of an NLS equation concentrating on lower dimensional spheres, Bound. Value Probl., 168 (2015), 19pp. doi: 10.1186/s13661-015-0411-8.  Google Scholar

[15]

N. S. Papageorgiou, C. Vetro and F. Vetro, Multiple solutions for parametric double phase Dirichlet problems, Commun. Contemp. Math., (2020), 18pp. doi: 10.1142/S0219199720500066.  Google Scholar

[16]

N. S. PapageorgiouC. Vetro and F. Vetro, Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential, J. Differ. Equ., 268 (2020), 4102-4118.  doi: 10.1016/j.jde.2019.10.026.  Google Scholar

[17]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.  Google Scholar

[18]

Y. Sato, Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency, Commun. Pure. Appl. Anal., 7 (2008), 883-903.  doi: 10.3934/cpaa.2008.7.883.  Google Scholar

[19]

C. Vetro, An elliptic equation on n-dimensional manifolds, Complex Var. Elliptic, (2020), 17pp. doi: 10.1080/17476933.2020.1711745.  Google Scholar

[20]

C. Vetro, Parametric and nonparametric A-Laplace problems: Existence of solutions and asymptotic analysis, Asymptot. Anal., (2020), 14pp. Google Scholar

[21]

C. Vetro, Pairs of nontrivial smooth solutions for nonlinear Neumann problems, Appl. Math. Lett., 103 (2020), 1-7.  doi: 10.1016/j.aml.2019.106171.  Google Scholar

[22]

C. Vetro, Semilinear Robin problems driven by the Laplacian plus an indefinite potential, Complex Var. Elliptic, 65 (2020), 573-587.  doi: 10.1080/17476933.2019.1597066.  Google Scholar

[23]

C. Vetro and F. Vetro, On problems driven by the (p(·), q(·))-Laplace operator, Mediterr. J. Math, 17 (2019), 1-11.   Google Scholar

[24]

X. Wang, On concentration of positive bound states of nonlinear Schr$\ddot{o}$dinger equations, Commun. Math. Phys., 53 (1993), 229-244.   Google Scholar

[25]

M. Willem, Minimax theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[1]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[2]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

[3]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[4]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[5]

Maurizio Garrione, Marta Strani. Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 91-103. doi: 10.3934/dcdss.2019006

[6]

Shixiong Wang, Longjiang Qu, Chao Li, Huaxiong Wang. Further improvement of factoring $ N = p^r q^s$ with partial known bits. Advances in Mathematics of Communications, 2019, 13 (1) : 121-135. doi: 10.3934/amc.2019007

[7]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[8]

Leszek Gasiński, Nikolaos S. Papageorgiou. Dirichlet $(p,q)$-equations at resonance. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2037-2060. doi: 10.3934/dcds.2014.34.2037

[9]

Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715

[10]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[11]

Samer Dweik. $ L^{p, q} $ estimates on the transport density. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3001-3009. doi: 10.3934/cpaa.2019134

[12]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[13]

Fabio Cipriani, Gabriele Grillo. On the $l^p$ -agmon's theory. Conference Publications, 1998, 1998 (Special) : 167-176. doi: 10.3934/proc.1998.1998.167

[14]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[15]

Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019

[16]

Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093

[17]

T. F. Ma, M. L. Pelicer. Attractors for weakly damped beam equations with $p$-Laplacian. Conference Publications, 2013, 2013 (special) : 525-534. doi: 10.3934/proc.2013.2013.525

[18]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[19]

Kerstin Does. An evolution equation involving the normalized $P$-Laplacian. Communications on Pure & Applied Analysis, 2011, 10 (1) : 361-396. doi: 10.3934/cpaa.2011.10.361

[20]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (32)
  • HTML views (25)
  • Cited by (0)

Other articles
by authors

[Back to Top]