In this paper, we study the existence of $ L^2 $-normalized solutions for the following 3-coupled nonlinear Schrödinger equations in $ [H_r^1( \mathbb{R}^N)]^3 $,
$ \begin{equation*} \begin{cases} -\Delta u_i = \lambda_i u_i+\mu_i|u_i|^{p_i-2}u_i+\beta r_i|u_i|^{r_i-2}\big(\sum\limits_{j\neq i}|u_j|^{r_j}\big)u_i,\\ |u_i|_2^2 = a_i, \quad i, j = 1,2,3, \end{cases} \end{equation*} $
where $ \mu_i, \beta $ and $ a_i $ are given positive constants, $ \lambda_i $ appear as unknown parameters, and $ H_r^1( \mathbb{R}^N) $ denotes the radial subspace of Hilbert space $ H^1( \mathbb{R}^N) $. For $ p_i, r_i $ satisfying $ L^2 $-subcritical or $ L^2 $-supercritical conditions, we obtain positive solutions of this system using variational methods and perturbation methods.
Citation: |
[1] |
T. Bartsch and L. Jeanjean, Normalized solutions for nonlinear Schrödinger systems, P. Roy. Soc. Edinb. A, 148 (2018), 225-242.
doi: 10.1017/S0308210517000087.![]() ![]() ![]() |
[2] |
T. Bartsch, L. Jeanjean and N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on $\mathbb{R}^3$, J. Math. Pure. Appl., 106 (2016), 583-614.
doi: 10.1016/j.matpur.2016.03.004.![]() ![]() ![]() |
[3] |
T. Bartsch and N. Soave, A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272 (2017), 4998-5037.
doi: 10.1016/j.jfa.2017.01.025.![]() ![]() ![]() |
[4] |
T. Bartsch and N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differ. Equ., 58 (2019), 1-24.
doi: 10.1007/s00526-018-1476-x.![]() ![]() ![]() |
[5] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Ⅱ existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82 (1983), 347-375.
doi: 10.1007/BF00250556.![]() ![]() ![]() |
[6] |
M. Du, L. Tian, J. Wang and F. Zhang, Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, P. Roy. Soc. Edinb. A, 149 (2018), 617-653.
doi: 10.1017/prm.2018.41.![]() ![]() ![]() |
[7] |
T. Gou and L. Jeanjean, Multiple positive normalized solutions for nonlinear Schrödinger systems, Nonlinearity, 31 (2018), 2319-2345.
doi: 10.1088/1361-6544/aab0bf.![]() ![]() ![]() |
[8] |
L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633-1659.
doi: 10.1016/S0362-546X(96)00021-1.![]() ![]() ![]() |
[9] |
L. Lu, $L^2$ normalized solutions for nonlinear Schrödinger systems in $\mathbb{R}^3$, Nonlinear Anal., 191 (2020), 1-19.
doi: 10.1016/j.na.2019.111621.![]() ![]() ![]() |
[10] |
N. V. Nguyen, On the orbital stability of solitary waves for the 2-coupled nonlinear Schrödinger system, Commun. Math. Sci., 9 (2011), 997-1012.
doi: 10.4310/CMS.2011.v9.n4.a3.![]() ![]() ![]() |
[11] |
N. V. Nguyen and Z. Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system, Adv. Differ. Equ., 16 (2011), 977-1000.
![]() ![]() |
[12] |
N. V. Nguyen and Z. Q. Wang, Orbital stability of solitary waves of a 3-coupled nonlinear Schrödinger system, Nonlinear Anal., 90 (2013), 1-26.
doi: 10.1016/j.na.2013.05.027.![]() ![]() ![]() |
[13] |
N. V. Nguyen and Z. Q. Wang, Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system, Discrete Contin. Dyn. Syst., 36 (2015), 1005-1021.
doi: 10.3934/dcds.2016.36.1005.![]() ![]() ![]() |
[14] |
B. Noris, H. Tavares and G. Verzini, Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials, Discrete Contin. Dyn. Syst., 35 (2015), 6085-6112.
doi: 10.3934/dcds.2015.35.6085.![]() ![]() ![]() |
[15] |
B. Noris, H. Tavares and G. Verzini, Normalized solutions for nonlinear Schrödinger systems on bounded domains, Nonlinearity, 32 (2019), 1044-1072.
doi: 10.1088/1361-6544/aaf2e0.![]() ![]() ![]() |
[16] |
M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations, Nonlinear Anal., 26 (1996), 933-939.
doi: 10.1016/0362-546X(94)00340-8.![]() ![]() ![]() |
[17] |
M. Willem, Minimax Theorems, Boston (1996).
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |