November  2020, 19(11): 5157-5180. doi: 10.3934/cpaa.2020231

Quasi-periodic solutions for the two-dimensional systems with an elliptic-type degenerate equilibrium point under small perturbations

College of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410006, China

* Corresponding author

Received  November 2019 Revised  May 2020 Published  September 2020

Fund Project: The second author is supported by the Education Department Project of Hunan Province (No.18C0026) and the NNSF of China (No.11971163)

In this paper, we consider the existence of quasi-periodic solutions for the two-dimensional systems with an elliptic-type degenerate equilibrium point under small perturbations. We prove that under appropriate hypotheses there exist quasi-periodic solutions for perturbed ODEs near the equilibrium point for most parameter values.

Citation: Jinjing Jiao, Guanghua Shi. Quasi-periodic solutions for the two-dimensional systems with an elliptic-type degenerate equilibrium point under small perturbations. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5157-5180. doi: 10.3934/cpaa.2020231
References:
[1]

V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 18 (1963), 91-192.   Google Scholar

[2]

J. L. Braaksma and H. W. Broer, On a quasi-periodic Hopf bifurcation, Ann. Inst. Hemri Poincaré Anal. Nonlinear, 4 (1987), 115–168.  Google Scholar

[3]

J. L. BraaksmaH. W. Broer and G. B. Huitema, Toward a quasi-periodic bifurcation theory, Mem. Am. Math. Soc., 83 (1990), 83-167.   Google Scholar

[4]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems: Order Amidst Chaos, Lecture Notes in Math, Springer, Berlin, 1996.  Google Scholar

[5]

M. Friedman, Quasi-periodic solutions of nonlinear ordinary differential equations with small damping, Bull. Am. Math. Soc., 73 (1967), 460-464.  doi: 10.1090/S0002-9904-1967-11783-X.  Google Scholar

[6]

G. Gentile, Quasi-periodic motions in strongly dissipative forced systems, Ergod. Theor. Dyn. Syst., 30 (2010), 1457-1469.  doi: 10.1017/S0143385709000583.  Google Scholar

[7]

A. Jorba and C. Simo, On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704-1737.  doi: 10.1137/S0036141094276913.  Google Scholar

[8]

X. Li and R. de la Llave, Construction of quasi-periodic solutions of delay differential equations via KAM technique, J. Differ. Equ., 247 (2009), 822-865.  doi: 10.1016/j.jde.2009.03.009.  Google Scholar

[9]

X. Li and X. Yuan, Quasi-periodic solution for perturbed autonomous delay differential equations, J. Differ. Equ., 252 (2012), 3752-3796.  doi: 10.1016/j.jde.2011.11.014.  Google Scholar

[10]

X. Li and Z. Shang, Quasi-Periodic Solutions for Differential Equations with an Elliptic-Type Degenerate Equilibrium Point Under Small Perturbations, J. Dyn. Differ. Equ., 31 (2019), 653-681.  doi: 10.1007/s10884-018-9642-6.  Google Scholar

[11]

J. Moser, Combiantion tones for Duffing's equation, Commun. Pure Appl. Math., 18 (1965), 167-181.  doi: 10.1002/cpa.3160180116.  Google Scholar

[12]

J. Moser, Convergent series expensions for quasi-periodic motions, Math. Ann., 169 (1967), 136-176.  doi: 10.1007/BF01399536.  Google Scholar

[13]

J. Pöschel, A lecture on the classical KAM theorem, Proc. Symp. Pure Math., 69 (2001), 707-732.  doi: 10.1090/pspum/069/1858551.  Google Scholar

[14]

W. Qiu and J. Si, On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point, Comm. Pure Appl. Math., 14 (2015), 421-437.  doi: 10.3934/cpaa.2015.14.421.  Google Scholar

[15]

M. B. Sevryuk, Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method, Discrete Contin. Dyn. Syst., 18 (2007), 569-595.  doi: 10.3934/dcds.2007.18.569.  Google Scholar

[16]

W. Si and J. Si, Elliptic-type degenerate invariant tori for quasi-periodically forced four-dimensional non-conservative systems, J. Math. Anal. Appl., 460 (2018), 164-202.  doi: 10.1016/j.jmaa.2017.11.047.  Google Scholar

[17]

W. Si and J. Si, Construction of response solutions for two classes of quasi-periodically forced four-dimensional nonlinear systems with degenerate equilibrum point under small perturbations, J. Differ. Equ., 262 (2017), 4771-4822.  doi: 10.1016/j.jde.2016.12.019.  Google Scholar

[18]

W. Si and J. Si, Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems, Nonlinearity, 31 (2018), 2361-2418.  doi: 10.1088/1361-6544/aaa7b9.  Google Scholar

[19]

W. SiF. Wang and J. Si, Almost-periodic perturbations of nonhyperbolic equilibrium points via P$\ddot{o}$schel-R$\ddot{u}$ssmann KAM method, Commun. Pure Appl. Anal., 19 (2020), 541-585.  doi: 10.3934/cpaa.2020027.  Google Scholar

[20]

J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Wiley, 1992, Interscience, New York, 1950.  Google Scholar

[21]

J. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differ. Equ., 250 (2011), 551-571.  doi: 10.1016/j.jde.2010.09.030.  Google Scholar

[22]

J. Xu, On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems, Discrete Contin. Dyn. Syst., 33 (2013), 2593-2619.  doi: 10.3934/dcds.2013.33.2593.  Google Scholar

[23]

J. Xu and S. Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation, Ergod. Theor. Dyn. Syst., 31 (2011), 599-611.  doi: 10.1017/S0143385709001114.  Google Scholar

[24]

J. Xu and J. You, Persistence of lower-dimensional tori under the first Melnikov's non-resonance condition, J. Math. Pures Appl., 9 (2001), 1045-1067.  doi: 10.1016/S0021-7824(01)01221-1.  Google Scholar

[25]

J. You, A KAM Theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems, Commun. Math. Phys., 192 (1998), 145-168.  doi: 10.1007/s002200050294.  Google Scholar

[26]

X. Yuan, Construction of quasi-periodic breathers via KAM technique, Commun. Math. Phys., 226 (2002), 61-100.  doi: 10.1007/s002200100593.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 18 (1963), 91-192.   Google Scholar

[2]

J. L. Braaksma and H. W. Broer, On a quasi-periodic Hopf bifurcation, Ann. Inst. Hemri Poincaré Anal. Nonlinear, 4 (1987), 115–168.  Google Scholar

[3]

J. L. BraaksmaH. W. Broer and G. B. Huitema, Toward a quasi-periodic bifurcation theory, Mem. Am. Math. Soc., 83 (1990), 83-167.   Google Scholar

[4]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems: Order Amidst Chaos, Lecture Notes in Math, Springer, Berlin, 1996.  Google Scholar

[5]

M. Friedman, Quasi-periodic solutions of nonlinear ordinary differential equations with small damping, Bull. Am. Math. Soc., 73 (1967), 460-464.  doi: 10.1090/S0002-9904-1967-11783-X.  Google Scholar

[6]

G. Gentile, Quasi-periodic motions in strongly dissipative forced systems, Ergod. Theor. Dyn. Syst., 30 (2010), 1457-1469.  doi: 10.1017/S0143385709000583.  Google Scholar

[7]

A. Jorba and C. Simo, On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704-1737.  doi: 10.1137/S0036141094276913.  Google Scholar

[8]

X. Li and R. de la Llave, Construction of quasi-periodic solutions of delay differential equations via KAM technique, J. Differ. Equ., 247 (2009), 822-865.  doi: 10.1016/j.jde.2009.03.009.  Google Scholar

[9]

X. Li and X. Yuan, Quasi-periodic solution for perturbed autonomous delay differential equations, J. Differ. Equ., 252 (2012), 3752-3796.  doi: 10.1016/j.jde.2011.11.014.  Google Scholar

[10]

X. Li and Z. Shang, Quasi-Periodic Solutions for Differential Equations with an Elliptic-Type Degenerate Equilibrium Point Under Small Perturbations, J. Dyn. Differ. Equ., 31 (2019), 653-681.  doi: 10.1007/s10884-018-9642-6.  Google Scholar

[11]

J. Moser, Combiantion tones for Duffing's equation, Commun. Pure Appl. Math., 18 (1965), 167-181.  doi: 10.1002/cpa.3160180116.  Google Scholar

[12]

J. Moser, Convergent series expensions for quasi-periodic motions, Math. Ann., 169 (1967), 136-176.  doi: 10.1007/BF01399536.  Google Scholar

[13]

J. Pöschel, A lecture on the classical KAM theorem, Proc. Symp. Pure Math., 69 (2001), 707-732.  doi: 10.1090/pspum/069/1858551.  Google Scholar

[14]

W. Qiu and J. Si, On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point, Comm. Pure Appl. Math., 14 (2015), 421-437.  doi: 10.3934/cpaa.2015.14.421.  Google Scholar

[15]

M. B. Sevryuk, Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method, Discrete Contin. Dyn. Syst., 18 (2007), 569-595.  doi: 10.3934/dcds.2007.18.569.  Google Scholar

[16]

W. Si and J. Si, Elliptic-type degenerate invariant tori for quasi-periodically forced four-dimensional non-conservative systems, J. Math. Anal. Appl., 460 (2018), 164-202.  doi: 10.1016/j.jmaa.2017.11.047.  Google Scholar

[17]

W. Si and J. Si, Construction of response solutions for two classes of quasi-periodically forced four-dimensional nonlinear systems with degenerate equilibrum point under small perturbations, J. Differ. Equ., 262 (2017), 4771-4822.  doi: 10.1016/j.jde.2016.12.019.  Google Scholar

[18]

W. Si and J. Si, Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems, Nonlinearity, 31 (2018), 2361-2418.  doi: 10.1088/1361-6544/aaa7b9.  Google Scholar

[19]

W. SiF. Wang and J. Si, Almost-periodic perturbations of nonhyperbolic equilibrium points via P$\ddot{o}$schel-R$\ddot{u}$ssmann KAM method, Commun. Pure Appl. Anal., 19 (2020), 541-585.  doi: 10.3934/cpaa.2020027.  Google Scholar

[20]

J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Wiley, 1992, Interscience, New York, 1950.  Google Scholar

[21]

J. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differ. Equ., 250 (2011), 551-571.  doi: 10.1016/j.jde.2010.09.030.  Google Scholar

[22]

J. Xu, On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems, Discrete Contin. Dyn. Syst., 33 (2013), 2593-2619.  doi: 10.3934/dcds.2013.33.2593.  Google Scholar

[23]

J. Xu and S. Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation, Ergod. Theor. Dyn. Syst., 31 (2011), 599-611.  doi: 10.1017/S0143385709001114.  Google Scholar

[24]

J. Xu and J. You, Persistence of lower-dimensional tori under the first Melnikov's non-resonance condition, J. Math. Pures Appl., 9 (2001), 1045-1067.  doi: 10.1016/S0021-7824(01)01221-1.  Google Scholar

[25]

J. You, A KAM Theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems, Commun. Math. Phys., 192 (1998), 145-168.  doi: 10.1007/s002200050294.  Google Scholar

[26]

X. Yuan, Construction of quasi-periodic breathers via KAM technique, Commun. Math. Phys., 226 (2002), 61-100.  doi: 10.1007/s002200100593.  Google Scholar

[1]

Junxiang Xu. On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2593-2619. doi: 10.3934/dcds.2013.33.2593

[2]

Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure & Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421

[3]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[4]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[5]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[6]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[7]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[8]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[9]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[10]

Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252

[11]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[12]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks & Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[13]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[14]

Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080

[15]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[16]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[17]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[18]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[19]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

[20]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (25)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]