We are concerned with the Cauchy problem of the inelastic Boltzmann equation for soft potentials, with a Laplace term representing the random background forcing. The inelastic interaction here is characterized by the non-constant restitution coefficient. We prove that under the assumption that the initial datum has bounded mass, energy and entropy, there exists a weak solution to this equation. The smoothing effect of weak solutions is also studied. In addition, it is shown the solution is unique and stable with respect to the initial datum provided that the initial datum belongs to $ L^{2}(R^{3}) $.
Citation: |
[1] | R. J. Alonso, Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data, Indiana Univ. Math. J, 58 (2009), 999-1022. doi: 10.1512/iumj.2009.58.3506. |
[2] | R. J. Alonso, E. Carneiro and I. M. Gamba, Convolution inequalities for the Boltzmann collision operator, Commun. Math. Phys., 298 (2010), 293-322. doi: 10.1007/s00220-010-1065-0. |
[3] | R. J. Alonso and B. Lods, Free cooling and high-energy tails of granular gases with variable restitution coefficient, SIAM J. Math. Anal., 42 (2010), 2499-2538. doi: 10.1137/100793979. |
[4] | R. J. Alonso and B. Lods, Two proofs of Haff's law for dissipative gases: the use of entropy and the weakly inelastic regime, J. Math. Anal. Appl., 397 (2013), 260-275. doi: 10.1016/j.jmaa.2012.07.045. |
[5] | R. J. Alonso and B. Lods, Boltzmann model for viscoelastic particles: asymptotic behavior, pointwise lower bounds and regularity, Commun. Math. Phys., 331 (2014), 545-591. doi: 10.1007/s00220-014-2089-7. |
[6] | M. Bisi, J. A. Carrillo and G. Toscani, Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equillibria, J. Stat. Phys., 118 (2005), 301-331. doi: 10.1007/s10955-004-8785-5. |
[7] | M. Bisi, J. A. Carrillo and G. Toscani, Decay rates in probability metrics towards homogeneous cooling states for the inelastic maxwell model, J. Stat. Phys., 124 (2006), 625–653. doi: 10.1007/s10955-006-9035-9. |
[8] | A. V. Bobylev, J. A. Carrillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys., 98 (2000), 743-773. doi: 10.1023/A:1018627625800. |
[9] | A. V. Bobylev and C. Cercignani, Moment equations for a granular material in a thermal bath, J. Stat. Phys., 106 (2002), 547-567. doi: 10.1023/A:1013754205008. |
[10] | A. V. Bobylev and C. Cercignani, Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions, J. Stat. Phys., 110 (2003), 333-375. doi: 10.1023/A:1021031031038. |
[11] | C. Cercignani, R. Illner and C. Stoica, On diffusive equilibria in generalized kinetic theory, J. Stat. Phys., 105 (2001), 337-352. doi: 10.1023/A:1012246513712. |
[12] | Y. Chen and L. He, Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case, Arch. Ration. Mech. Anal., 201 (2011), 501-548. doi: 10.1007/s00205-010-0393-8. |
[13] | S. H. Choi and S.Y. Ha, Global existence of classical solutions to the inelastic Vlasov-Poisson-Boltzmann system, J. Stat. Phys., 156 (2014), 948-974. doi: 10.1007/s10955-014-1041-8. |
[14] | M. H. Ernst, E. Trizac and A. Barrat, The Boltzmann equation for driven systems of inelastic soft spheres, J. Stat. Phys., 124 (2006), 549-586. doi: 10.1007/s10955-006-9062-6. |
[15] | N. Fournier and H. Guérin, Well-posedness of the spatially homogeneous Landau equation for soft potentials, J. Funct. Anal., 256 (2008), 2542-2560. doi: 10.1016/j.jfa.2008.11.008. |
[16] | I. M. Gamba, V. Panferov and C. Villani, On the Boltzmann equation for diffusively excited granular media, Commun. Math. Phys., 246 (2004), 503-541. doi: 10.1007/s00220-004-1051-5. |
[17] | T. Gustafsson, Global $L^{p}$ properties for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal., 103 (1988), 1-38. doi: 10.1007/BF00292919. |
[18] | F. Meng and X. P. Yang, The existence and convergence of the Maxwell model for granular materials, Applicable Anal., 95 (2016), 2383-2396. doi: 10.1080/00036811.2015.1091068. |
[19] | S. Mischler, C. Mouhot and M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations for hard spheres. Part I: The Cauchy problem, J. Stat. Phys., 124 (2006), 605-702. doi: 10.1007/s10955-006-9096-9. |
[20] | S. Mischler and C. Mouhot, Cooling process for inelastic Boltzmann equations for hard spheres. Part II: Self-similar solutions and tail behavior, J. Stat. Phys., 124 (2006), 703-746. doi: 10.1007/s10955-006-9097-8. |
[21] | S. Mischler and C. Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, Commun. Math. Phys., 288 (2009), 431-502. doi: 10.1007/s00220-009-0773-9. |
[22] | C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Ration. Mech. Anal., 173 (2004), 169-212. doi: 10.1007/s00205-004-0316-7. |
[23] | C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann equation and Landau equations, Arch. Ration. Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106. |
[24] | C. Villani, Mathematics of granular materials, J. Stat. Phys., 124 (2006), 781-822. doi: 10.1007/s10955-006-9038-6. |
[25] | K. C. Wu, Global in time estimates for the spatially homogeneous Landau equation with soft potentials, J. Funct. Anal., 266 (2014), 3134-3155. doi: 10.1016/j.jfa.2013.11.005. |
[26] | J. Wei and X. Zhang, On the Cauchy problem for the inelastic Boltzmann equation with external force, J. Stat. Phys., 146 (2012), 592-609. doi: 10.1007/s10955-011-0410-9. |