November  2020, 19(11): 5219-5238. doi: 10.3934/cpaa.2020234

On the Cauchy problem of 3D nonhomogeneous incompressible nematic liquid crystal flows with vacuum

1. 

College of Mathematics, Changchun Normal University, Changchun 130032, China

2. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author

Received  March 2020 Revised  June 2020 Published  November 2020 Early access  September 2020

Fund Project: Yang Liu is supported by China Postdoctoral Science Foundation (No. 2018M642202) and National Natural Science Foundation of China (No. 11901288). Xin Zhong is supported by National Natural Science Foundation of China (No. 11901474)

This paper deals with the Cauchy problem of three-dimensional (3D) nonhomogeneous incompressible nematic liquid crystal flows. The global well-posedness of strong solutions with large velocity is established provided that $ \|\rho_0\|_{L^\infty}+\|\nabla d_0\|_{L^3} $ is suitably small. In particular, the initial density may contain vacuum states and even have compact support. Furthermore, the large time behavior of the solution is also obtained.

Citation: Yang Liu, Xin Zhong. On the Cauchy problem of 3D nonhomogeneous incompressible nematic liquid crystal flows with vacuum. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5219-5238. doi: 10.3934/cpaa.2020234
References:
[1]

S. DingJ. Huang and F. Xia, Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum, Filomat, 27 (2013), 1247-1257.  doi: 10.2298/FIL1307247D.

[2]

J. Ericksen, Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9 (1962), 371-378.  doi: 10.1007/BF00253358.

[3]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var. Partial Differ. Equ., 40 (2011), 15-36.  doi: 10.1007/s00526-010-0331-5.

[4]

M. Hong and Y. Mei, Well-posedness of the Ericksen-Leslie system with the Oseen-Frank energy in $L^3_uloc(\mathbb{R}^3)$, Calc. Var. Partial Differ. Equ., 58 (2019), . doi: 10.1007/s00526-018-1453-4.

[5]

M. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\Bbb R^2$, Adv. Math., 231 (2012), 1364-1400.  doi: 10.1016/j.aim.2012.06.009.

[6]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.

[7]

J. Li, Global strong and weak solutions to inhomogeneous nematic liquid crystal flow in two dimensions, Nonlinear Anal., 99 (2014), 80-94.  doi: 10.1016/j.na.2013.12.023.

[8]

J. Li, Global strong solutions to the inhomogeneous incompressible nematic liquid crystal flow, Methods Appl. Anal., 22 (2015), 201-220.  doi: 10.4310/MAA.2015.v22.n2.a4.

[9]

J. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differ. Equ., 263 (2017), 6512-6536.  doi: 10.1016/j.jde.2017.07.021.

[10]

X. Li, Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two, Discrete Contin. Dyn. Syst., 37 (2017), 4907-4922.  doi: 10.3934/dcds.2017211.

[11]

L. LiQ. Liu and and X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, Nonlinearity, 30 (2017), 4062-4088.  doi: 10.1088/1361-6544/aa8426.

[12]

F. LinJ. Lin and and C. Wang, Liquid crystal flow in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.

[13]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math. Ser. B, 31 (2010), 921-938.  doi: 10.1007/s11401-010-0612-5.

[14]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimensions three, Commun. Pure Appl. Math., 69 (2016), 1532-1571.  doi: 10.1002/cpa.21583.

[15] P. L. Lions, Mathematical topics in fluid mechanics, Vol. I: incompressible models, Oxford University Press, Oxford, 1996. 
[16]

Q. LiuS. LiuW. Tan and X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differ. Equ., 261 (2016), 6521-6569.  doi: 10.1016/j.jde.2016.08.044.

[17]

Q. Liu, C. Wang, X. Zhang and J. Zhou, On optimal boundary control of Ericksen-Leslie system in dimension two, Calc. Var. Partial Differ. Equ, 59 (2020), 64pp. doi: 10.1007/s00526-019-1676-z.

[18]

S. Liu and J. Zhang, Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2631-2648.  doi: 10.3934/dcdsb.2016065.

[19]

B. LüX. Shi and and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.  doi: 10.1088/1361-6544/aab31f.

[20]

L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, 13 (1959), 115-162. 

[21]

R. Temam, Navier-Stokes equations: theory and numerical analysis, Chelsea Publishing, Providence, RI, 2001. Reprint of the 1984 edition. doi: 10.1090/chel/343.

[22]

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal. Real World Appl., 12 (2011), 1510-1531.  doi: 10.1016/j.nonrwa.2010.10.010.

[23]

H. Yu and P. Zhang, Global regularity to the 3D incompressible nematic liquid crystal flows with vacuum, Nonlinear Anal., 174 (2018), 209-222.  doi: 10.1016/j.na.2018.04.022.

[24]

X. Zhong, A note on a global strong solution to the 2D Cauchy problem of density-dependent nematic liquid crystal flows with vacuum, C. R. Math. Acad. Sci. Paris, 356 (2018), 503-508.  doi: 10.1016/j.crma.2018.04.011.

show all references

References:
[1]

S. DingJ. Huang and F. Xia, Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum, Filomat, 27 (2013), 1247-1257.  doi: 10.2298/FIL1307247D.

[2]

J. Ericksen, Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9 (1962), 371-378.  doi: 10.1007/BF00253358.

[3]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var. Partial Differ. Equ., 40 (2011), 15-36.  doi: 10.1007/s00526-010-0331-5.

[4]

M. Hong and Y. Mei, Well-posedness of the Ericksen-Leslie system with the Oseen-Frank energy in $L^3_uloc(\mathbb{R}^3)$, Calc. Var. Partial Differ. Equ., 58 (2019), . doi: 10.1007/s00526-018-1453-4.

[5]

M. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\Bbb R^2$, Adv. Math., 231 (2012), 1364-1400.  doi: 10.1016/j.aim.2012.06.009.

[6]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.

[7]

J. Li, Global strong and weak solutions to inhomogeneous nematic liquid crystal flow in two dimensions, Nonlinear Anal., 99 (2014), 80-94.  doi: 10.1016/j.na.2013.12.023.

[8]

J. Li, Global strong solutions to the inhomogeneous incompressible nematic liquid crystal flow, Methods Appl. Anal., 22 (2015), 201-220.  doi: 10.4310/MAA.2015.v22.n2.a4.

[9]

J. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differ. Equ., 263 (2017), 6512-6536.  doi: 10.1016/j.jde.2017.07.021.

[10]

X. Li, Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two, Discrete Contin. Dyn. Syst., 37 (2017), 4907-4922.  doi: 10.3934/dcds.2017211.

[11]

L. LiQ. Liu and and X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, Nonlinearity, 30 (2017), 4062-4088.  doi: 10.1088/1361-6544/aa8426.

[12]

F. LinJ. Lin and and C. Wang, Liquid crystal flow in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.

[13]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math. Ser. B, 31 (2010), 921-938.  doi: 10.1007/s11401-010-0612-5.

[14]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimensions three, Commun. Pure Appl. Math., 69 (2016), 1532-1571.  doi: 10.1002/cpa.21583.

[15] P. L. Lions, Mathematical topics in fluid mechanics, Vol. I: incompressible models, Oxford University Press, Oxford, 1996. 
[16]

Q. LiuS. LiuW. Tan and X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differ. Equ., 261 (2016), 6521-6569.  doi: 10.1016/j.jde.2016.08.044.

[17]

Q. Liu, C. Wang, X. Zhang and J. Zhou, On optimal boundary control of Ericksen-Leslie system in dimension two, Calc. Var. Partial Differ. Equ, 59 (2020), 64pp. doi: 10.1007/s00526-019-1676-z.

[18]

S. Liu and J. Zhang, Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2631-2648.  doi: 10.3934/dcdsb.2016065.

[19]

B. LüX. Shi and and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.  doi: 10.1088/1361-6544/aab31f.

[20]

L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, 13 (1959), 115-162. 

[21]

R. Temam, Navier-Stokes equations: theory and numerical analysis, Chelsea Publishing, Providence, RI, 2001. Reprint of the 1984 edition. doi: 10.1090/chel/343.

[22]

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal. Real World Appl., 12 (2011), 1510-1531.  doi: 10.1016/j.nonrwa.2010.10.010.

[23]

H. Yu and P. Zhang, Global regularity to the 3D incompressible nematic liquid crystal flows with vacuum, Nonlinear Anal., 174 (2018), 209-222.  doi: 10.1016/j.na.2018.04.022.

[24]

X. Zhong, A note on a global strong solution to the 2D Cauchy problem of density-dependent nematic liquid crystal flows with vacuum, C. R. Math. Acad. Sci. Paris, 356 (2018), 503-508.  doi: 10.1016/j.crma.2018.04.011.

[1]

Yongfu Wang. Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4317-4333. doi: 10.3934/dcdsb.2020099

[2]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[3]

Hong Chen, Xin Zhong. Local well-posedness to the 2D Cauchy problem of non-isothermal nonhomogeneous nematic liquid crystal flows with vacuum at infinity. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022093

[4]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[5]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[6]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[7]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[8]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[9]

Xin Zhong. Global strong solution to the nonhomogeneous micropolar fluid equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021296

[10]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[11]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic and Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[12]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[13]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[14]

Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations and Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007

[15]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[16]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[17]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[18]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[19]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[20]

Blanca Climent-Ezquerra, Francisco Guillén-González. Global in time solution and time-periodicity for a smectic-A liquid crystal model. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1473-1493. doi: 10.3934/cpaa.2010.9.1473

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (166)
  • HTML views (50)
  • Cited by (0)

Other articles
by authors

[Back to Top]