November  2020, 19(11): 5239-5252. doi: 10.3934/cpaa.2020235

Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

* Corresponding author

Received  March 2020 Revised  June 2020 Published  September 2020

Fund Project: This work is supported by National Natural Science Foundation of China (No. 11971393)

We investigate the following gauged nonlinear Schrödinger equation
$ \begin{equation*} \begin{cases} -\Delta u+\omega u+\lambda\bigg(\dfrac{h_{u}^{2}(|x|)}{|x|^{2}}+ \int_{|x|}^{+\infty}\dfrac{h_{u}(s)}{s}u^{2}(s)ds\bigg)u = f(u) \ \ \ \ \ \mbox{in}\ \mathbb{R}^{2},\\ u\in H_r^1(\mathbb{R}^{2}), \end{cases} \end{equation*} $
where
$ \omega,\lambda>0 $
and
$ h_{u}(s) = \frac{1}{2}\int_{0}^{s}ru^{2}(r)dr $
. When
$ f $
has exponential critical growth, by using the constrained minimization method and Trudinger-Moser inequality, it is proved that the equation has a ground state radial sign-changing solution
$ u_{\lambda} $
which changes sign exactly once. Moreover, the asymptotic behavior of
$ u_{\lambda} $
as
$ \lambda\rightarrow0 $
is analyzed.
Citation: Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235
References:
[1]

C. O. Alves and D. S. Pereira, Existence and nonexistence of least energy nodal solution for a class of elliptic problem in $\mathbb{R}^{2}$, Topol. Methods Nonlinear Anal., 46 (2015), 867-892.   Google Scholar

[2]

L. BergéA. De Bouard and J. C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.   Google Scholar

[3]

J. ByeonH. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.  doi: 10.1016/j.jfa.2012.05.024.  Google Scholar

[4]

J. ByeonH. Huh and J. Seok, On standing waves with a vortex point of order $N$ for the nonlinear Chern-Simons-Schrödinger equations, J. Differ. Equ., 261 (2016), 1285-1316.  doi: 10.1016/j.jde.2016.04.004.  Google Scholar

[5]

D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^{2}$, Commun. Partial Differ. Equ., 17 (1992), 407-435.  doi: 10.1080/03605309208820848.  Google Scholar

[6]

Y. B. DengS. J. Peng and W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in $\mathbb{R}^{2}$, J. Differ. Equ., 264 (2018), 4006-4035.  doi: 10.1016/j.jde.2017.12.003.  Google Scholar

[7]

J. M. do Ó, N-laplacian equations in $\mathbb{R}^{N}$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.  doi: 10.1155/S1085337597000419.  Google Scholar

[8]

J. M. do ÓE. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.  doi: 10.1016/j.jmaa.2008.03.074.  Google Scholar

[9]

J. HanH. Huh and J. Seok, Chern-Simons limit of the standing wave solutions for the Schrödinger equations coupled with a neutral scalar field, J. Funct. Anal., 266 (2014), 318-342.  doi: 10.1016/j.jfa.2013.09.019.  Google Scholar

[10]

R. Jackiw and S. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.  Google Scholar

[11]

R. Jackiw and S. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972.  doi: 10.1103/PhysRevLett.64.2969.  Google Scholar

[12]

C. Ji and F. Fang, Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 450 (2017), 578-591.  doi: 10.1016/j.jmaa.2017.01.065.  Google Scholar

[13]

G. B. LiX. Luo and W. Shuai, Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 455 (2017), 1559-1578.  doi: 10.1016/j.jmaa.2017.06.048.  Google Scholar

[14]

G. D. Li, Y. Y. Li and C. L. Tang, Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth, Complex Var. Elliptic Equ., (2020). doi: 10.1080/17476933.2020.1723564.  Google Scholar

[15]

B. P. Liu and P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam., 32 (2016), 751-794.  doi: 10.4171/RMI/898.  Google Scholar

[16]

B. P. LiuP. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Not. IMRN, 2014 (2014), 6341-6398.  doi: 10.1093/imrn/rnt161.  Google Scholar

[17]

Z. S. LiuZ. G. Ouyang and J. J. Zhang, Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in $\mathbb{R}^{2}$, Nonlinearity, 32 (2019), 3082-3111.  doi: 10.1088/1361-6544/ab1bc4.  Google Scholar

[18]

C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), 5-7.   Google Scholar

[19]

S. J. Oh and F. Pusateri, Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Not. IMRN, 2015 (2015), 13122-13147.  doi: 10.1093/imrn/rnv093.  Google Scholar

[20]

A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differ. Equ., 53 (2015), 289-316.  doi: 10.1007/s00526-014-0749-2.  Google Scholar

[21]

L. J. Shen, Ground state solutions for a class of gauged Schrödinger equations with subcritical and critical exponential growth, Math. Method Appl. Sci., 43 (2020), 536-551.  doi: 10.1007/s40840-018-0686-x.  Google Scholar

[22]

M. Willem, Minimax Theorems, Birkh$\ddot{\mbox a}$user Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[23]

W. H. Xie and C. Chen, Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations, Appl. Anal., 99 (2020), 880-898.  doi: 10.1080/00036811.2018.1514020.  Google Scholar

[24]

J. ZhangW. Zhang and X. L. Xie, Infinitely many solutions for a gauged nonlinear Schrödinger equation, Appl. Math. Lett., 88 (2019), 21-27.  doi: 10.1016/j.aml.2018.08.007.  Google Scholar

show all references

References:
[1]

C. O. Alves and D. S. Pereira, Existence and nonexistence of least energy nodal solution for a class of elliptic problem in $\mathbb{R}^{2}$, Topol. Methods Nonlinear Anal., 46 (2015), 867-892.   Google Scholar

[2]

L. BergéA. De Bouard and J. C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.   Google Scholar

[3]

J. ByeonH. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.  doi: 10.1016/j.jfa.2012.05.024.  Google Scholar

[4]

J. ByeonH. Huh and J. Seok, On standing waves with a vortex point of order $N$ for the nonlinear Chern-Simons-Schrödinger equations, J. Differ. Equ., 261 (2016), 1285-1316.  doi: 10.1016/j.jde.2016.04.004.  Google Scholar

[5]

D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^{2}$, Commun. Partial Differ. Equ., 17 (1992), 407-435.  doi: 10.1080/03605309208820848.  Google Scholar

[6]

Y. B. DengS. J. Peng and W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in $\mathbb{R}^{2}$, J. Differ. Equ., 264 (2018), 4006-4035.  doi: 10.1016/j.jde.2017.12.003.  Google Scholar

[7]

J. M. do Ó, N-laplacian equations in $\mathbb{R}^{N}$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.  doi: 10.1155/S1085337597000419.  Google Scholar

[8]

J. M. do ÓE. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.  doi: 10.1016/j.jmaa.2008.03.074.  Google Scholar

[9]

J. HanH. Huh and J. Seok, Chern-Simons limit of the standing wave solutions for the Schrödinger equations coupled with a neutral scalar field, J. Funct. Anal., 266 (2014), 318-342.  doi: 10.1016/j.jfa.2013.09.019.  Google Scholar

[10]

R. Jackiw and S. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.  Google Scholar

[11]

R. Jackiw and S. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972.  doi: 10.1103/PhysRevLett.64.2969.  Google Scholar

[12]

C. Ji and F. Fang, Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 450 (2017), 578-591.  doi: 10.1016/j.jmaa.2017.01.065.  Google Scholar

[13]

G. B. LiX. Luo and W. Shuai, Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 455 (2017), 1559-1578.  doi: 10.1016/j.jmaa.2017.06.048.  Google Scholar

[14]

G. D. Li, Y. Y. Li and C. L. Tang, Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth, Complex Var. Elliptic Equ., (2020). doi: 10.1080/17476933.2020.1723564.  Google Scholar

[15]

B. P. Liu and P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam., 32 (2016), 751-794.  doi: 10.4171/RMI/898.  Google Scholar

[16]

B. P. LiuP. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Not. IMRN, 2014 (2014), 6341-6398.  doi: 10.1093/imrn/rnt161.  Google Scholar

[17]

Z. S. LiuZ. G. Ouyang and J. J. Zhang, Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in $\mathbb{R}^{2}$, Nonlinearity, 32 (2019), 3082-3111.  doi: 10.1088/1361-6544/ab1bc4.  Google Scholar

[18]

C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), 5-7.   Google Scholar

[19]

S. J. Oh and F. Pusateri, Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Not. IMRN, 2015 (2015), 13122-13147.  doi: 10.1093/imrn/rnv093.  Google Scholar

[20]

A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differ. Equ., 53 (2015), 289-316.  doi: 10.1007/s00526-014-0749-2.  Google Scholar

[21]

L. J. Shen, Ground state solutions for a class of gauged Schrödinger equations with subcritical and critical exponential growth, Math. Method Appl. Sci., 43 (2020), 536-551.  doi: 10.1007/s40840-018-0686-x.  Google Scholar

[22]

M. Willem, Minimax Theorems, Birkh$\ddot{\mbox a}$user Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[23]

W. H. Xie and C. Chen, Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations, Appl. Anal., 99 (2020), 880-898.  doi: 10.1080/00036811.2018.1514020.  Google Scholar

[24]

J. ZhangW. Zhang and X. L. Xie, Infinitely many solutions for a gauged nonlinear Schrödinger equation, Appl. Math. Lett., 88 (2019), 21-27.  doi: 10.1016/j.aml.2018.08.007.  Google Scholar

[1]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[2]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[3]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[4]

Weiwei Ao, Chao Liu. Asymptotic behavior of sign-changing radial solutions of a semilinear elliptic equation in $ \mathbb{R}^2 $ when exponent approaches $ +\infty $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 5047-5077. doi: 10.3934/dcds.2020211

[5]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[6]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[7]

Hui Guo, Tao Wang. A note on sign-changing solutions for the Schrödinger Poisson system. Electronic Research Archive, 2020, 28 (1) : 195-203. doi: 10.3934/era.2020013

[8]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[9]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

[10]

Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure & Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040

[11]

Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure & Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004

[12]

Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009

[13]

Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669

[14]

Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417

[15]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[16]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[17]

Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079

[18]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[19]

Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256

[20]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (58)
  • HTML views (47)
  • Cited by (0)

Other articles
by authors

[Back to Top]