We investigate the following gauged nonlinear Schrödinger equation
$ \begin{equation*} \begin{cases} -\Delta u+\omega u+\lambda\bigg(\dfrac{h_{u}^{2}(|x|)}{|x|^{2}}+ \int_{|x|}^{+\infty}\dfrac{h_{u}(s)}{s}u^{2}(s)ds\bigg)u = f(u) \ \ \ \ \ \mbox{in}\ \mathbb{R}^{2},\\ u\in H_r^1(\mathbb{R}^{2}), \end{cases} \end{equation*} $
where $ \omega,\lambda>0 $ and $ h_{u}(s) = \frac{1}{2}\int_{0}^{s}ru^{2}(r)dr $. When $ f $ has exponential critical growth, by using the constrained minimization method and Trudinger-Moser inequality, it is proved that the equation has a ground state radial sign-changing solution $ u_{\lambda} $ which changes sign exactly once. Moreover, the asymptotic behavior of $ u_{\lambda} $ as $ \lambda\rightarrow0 $ is analyzed.
Citation: |
[1] |
C. O. Alves and D. S. Pereira, Existence and nonexistence of least energy nodal solution for a class of elliptic problem in $\mathbb{R}^{2}$, Topol. Methods Nonlinear Anal., 46 (2015), 867-892.
![]() ![]() |
[2] |
L. Bergé, A. De Bouard and J. C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.
![]() ![]() |
[3] |
J. Byeon, H. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.
doi: 10.1016/j.jfa.2012.05.024.![]() ![]() ![]() |
[4] |
J. Byeon, H. Huh and J. Seok, On standing waves with a vortex point of order $N$ for the nonlinear Chern-Simons-Schrödinger equations, J. Differ. Equ., 261 (2016), 1285-1316.
doi: 10.1016/j.jde.2016.04.004.![]() ![]() ![]() |
[5] |
D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^{2}$, Commun. Partial Differ. Equ., 17 (1992), 407-435.
doi: 10.1080/03605309208820848.![]() ![]() ![]() |
[6] |
Y. B. Deng, S. J. Peng and W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in $\mathbb{R}^{2}$, J. Differ. Equ., 264 (2018), 4006-4035.
doi: 10.1016/j.jde.2017.12.003.![]() ![]() ![]() |
[7] |
J. M. do Ó, N-laplacian equations in $\mathbb{R}^{N}$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.
doi: 10.1155/S1085337597000419.![]() ![]() ![]() |
[8] |
J. M. do Ó, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.
doi: 10.1016/j.jmaa.2008.03.074.![]() ![]() ![]() |
[9] |
J. Han, H. Huh and J. Seok, Chern-Simons limit of the standing wave solutions for the Schrödinger equations coupled with a neutral scalar field, J. Funct. Anal., 266 (2014), 318-342.
doi: 10.1016/j.jfa.2013.09.019.![]() ![]() ![]() |
[10] |
R. Jackiw and S. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.
doi: 10.1103/PhysRevD.42.3500.![]() ![]() ![]() |
[11] |
R. Jackiw and S. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972.
doi: 10.1103/PhysRevLett.64.2969.![]() ![]() ![]() |
[12] |
C. Ji and F. Fang, Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 450 (2017), 578-591.
doi: 10.1016/j.jmaa.2017.01.065.![]() ![]() ![]() |
[13] |
G. B. Li, X. Luo and W. Shuai, Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 455 (2017), 1559-1578.
doi: 10.1016/j.jmaa.2017.06.048.![]() ![]() ![]() |
[14] |
G. D. Li, Y. Y. Li and C. L. Tang, Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth, Complex Var. Elliptic Equ., (2020).
doi: 10.1080/17476933.2020.1723564.![]() ![]() ![]() |
[15] |
B. P. Liu and P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam., 32 (2016), 751-794.
doi: 10.4171/RMI/898.![]() ![]() ![]() |
[16] |
B. P. Liu, P. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Not. IMRN, 2014 (2014), 6341-6398.
doi: 10.1093/imrn/rnt161.![]() ![]() ![]() |
[17] |
Z. S. Liu, Z. G. Ouyang and J. J. Zhang, Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in $\mathbb{R}^{2}$, Nonlinearity, 32 (2019), 3082-3111.
doi: 10.1088/1361-6544/ab1bc4.![]() ![]() ![]() |
[18] |
C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), 5-7.
![]() ![]() |
[19] |
S. J. Oh and F. Pusateri, Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Not. IMRN, 2015 (2015), 13122-13147.
doi: 10.1093/imrn/rnv093.![]() ![]() ![]() |
[20] |
A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differ. Equ., 53 (2015), 289-316.
doi: 10.1007/s00526-014-0749-2.![]() ![]() ![]() |
[21] |
L. J. Shen, Ground state solutions for a class of gauged Schrödinger equations with subcritical and critical exponential growth, Math. Method Appl. Sci., 43 (2020), 536-551.
doi: 10.1007/s40840-018-0686-x.![]() ![]() ![]() |
[22] |
M. Willem, Minimax Theorems, Birkh$\ddot{\mbox a}$user Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[23] |
W. H. Xie and C. Chen, Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations, Appl. Anal., 99 (2020), 880-898.
doi: 10.1080/00036811.2018.1514020.![]() ![]() ![]() |
[24] |
J. Zhang, W. Zhang and X. L. Xie, Infinitely many solutions for a gauged nonlinear Schrödinger equation, Appl. Math. Lett., 88 (2019), 21-27.
doi: 10.1016/j.aml.2018.08.007.![]() ![]() ![]() |