In this paper, we consider nonlinear problems involving nonlocal Monge-Ampère operators. By using a sliding method, we establish monotonicity of positive solutions for nonlocal Monge-Ampère problems both in an infinite slab and in an upper half space. During this process, an important idea we applied is to estimate the singular integrals defining the nonlocal Monge-Ampère operator along a sequence of approximate maximum points. It allows us to assume weaker conditions on nonlinear terms. Another idea is to employ a generalized average inequality which plays an important role and greatly simplify the process of the sliding.
Citation: |
[1] |
H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalitites for second-order elliptic equations with applications to unbounded domains, I, Duke Math. J., 81 (1996), 467-494.
doi: 10.1215/S0012-7094-96-08117-X.![]() ![]() ![]() |
[2] |
H. Berestycki, L. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., 50 (1997), 1089-1111.
doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.![]() ![]() ![]() |
[3] |
H. Berestycki and L. Nirenberg, Monotonicity, symmetry and anti- symmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.
doi: 10.1016/0393-0440(88)90006-X.![]() ![]() ![]() |
[4] |
H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semi-linear elliptic equations in cylindrical domains, Analysis, et cetera, Academic Press, Boston, MA, (1990), 115–164.
![]() ![]() |
[5] |
H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.
doi: 10.1007/BF01244896.![]() ![]() ![]() |
[6] |
L. Caffarelli and F. Charro, On a fractional Monge-Ampère operator, Ann. PDE., 1 (2015), 47pp.
doi: 10.1007/s40818-015-0005-x.![]() ![]() ![]() |
[7] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. PDE., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[8] |
L. Caffarelli and L. Silvestre, A nonlocal Monge-Ampère equation, Commun. Anal. Geom., 24 (2016), 307-335.
doi: 10.4310/CAG.2016.v24.n2.a4.![]() ![]() ![]() |
[9] |
W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016.![]() ![]() ![]() |
[10] |
W. Chen, C. Li and and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
[11] |
W. Chen, C. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co, 2019.
![]() ![]() |
[12] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[13] |
W. Chen and S. Qi, Direct methods on fractional equations, Disc. Cont. Dyna. Sys., 39 (2019), 1269-1310.
doi: 10.3934/dcds.2019055.![]() ![]() ![]() |
[14] |
S. Dipierro, N. Soave and E. Valdinoci, On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.
doi: 10.1007/s00208-016-1487-x.![]() ![]() ![]() |
[15] |
Z. Liu and W. Chen, Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains, arXiv: 1905.06493.
![]() |
[16] |
L. Wu and W. Chen, The sliding method for the fractional p-Laplacian, Adv. Math., 361 (2020), 106933.
doi: 10.1016/j.aim.2019.106933.![]() ![]() ![]() |
[17] |
L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities, arXiv: 1905.09999.
![]() |