November  2020, 19(11): 5269-5283. doi: 10.3934/cpaa.2020237

Monotonicity of solutions for a class of nonlocal Monge-Ampère problem

School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical, Sciences, Central China Normal University, Wuhan, 430079, China, Department of Mathematical Sciences, Yeshiva University, New York, NY, USA

Received  April 2020 Revised  June 2020 Published  September 2020

Fund Project: This work was supported by Natural Science Foundation of China (Grant No.11771166), Hubei Key Laboratory of Mathematical Sciences, Program for Changjiang Scholars and Innovative Research Team in University #IRT_17R46 and China Scholarship Council

In this paper, we consider nonlinear problems involving nonlocal Monge-Ampère operators. By using a sliding method, we establish monotonicity of positive solutions for nonlocal Monge-Ampère problems both in an infinite slab and in an upper half space. During this process, an important idea we applied is to estimate the singular integrals defining the nonlocal Monge-Ampère operator along a sequence of approximate maximum points. It allows us to assume weaker conditions on nonlinear terms. Another idea is to employ a generalized average inequality which plays an important role and greatly simplify the process of the sliding.

Citation: Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237
References:
[1]

H. BerestyckiL. Caffarelli and L. Nirenberg, Inequalitites for second-order elliptic equations with applications to unbounded domains, I, Duke Math. J., 81 (1996), 467-494.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar

[2]

H. BerestyckiL. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar

[3]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and anti- symmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.  doi: 10.1016/0393-0440(88)90006-X.  Google Scholar

[4]

H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semi-linear elliptic equations in cylindrical domains, Analysis, et cetera, Academic Press, Boston, MA, (1990), 115–164.  Google Scholar

[5]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.  doi: 10.1007/BF01244896.  Google Scholar

[6]

L. Caffarelli and F. Charro, On a fractional Monge-Ampère operator, Ann. PDE., 1 (2015), 47pp. doi: 10.1007/s40818-015-0005-x.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. PDE., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, A nonlocal Monge-Ampère equation, Commun. Anal. Geom., 24 (2016), 307-335.  doi: 10.4310/CAG.2016.v24.n2.a4.  Google Scholar

[9]

W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[10]

W. ChenC. Li and and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[11]

W. Chen, C. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co, 2019.  Google Scholar

[12]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[13]

W. Chen and S. Qi, Direct methods on fractional equations, Disc. Cont. Dyna. Sys., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.  Google Scholar

[14]

S. DipierroN. Soave and E. Valdinoci, On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.  doi: 10.1007/s00208-016-1487-x.  Google Scholar

[15]

Z. Liu and W. Chen, Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains, arXiv: 1905.06493. Google Scholar

[16]

L. Wu and W. Chen, The sliding method for the fractional p-Laplacian, Adv. Math., 361 (2020), 106933. doi: 10.1016/j.aim.2019.106933.  Google Scholar

[17]

L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities, arXiv: 1905.09999. Google Scholar

show all references

References:
[1]

H. BerestyckiL. Caffarelli and L. Nirenberg, Inequalitites for second-order elliptic equations with applications to unbounded domains, I, Duke Math. J., 81 (1996), 467-494.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar

[2]

H. BerestyckiL. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar

[3]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and anti- symmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.  doi: 10.1016/0393-0440(88)90006-X.  Google Scholar

[4]

H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semi-linear elliptic equations in cylindrical domains, Analysis, et cetera, Academic Press, Boston, MA, (1990), 115–164.  Google Scholar

[5]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.  doi: 10.1007/BF01244896.  Google Scholar

[6]

L. Caffarelli and F. Charro, On a fractional Monge-Ampère operator, Ann. PDE., 1 (2015), 47pp. doi: 10.1007/s40818-015-0005-x.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. PDE., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, A nonlocal Monge-Ampère equation, Commun. Anal. Geom., 24 (2016), 307-335.  doi: 10.4310/CAG.2016.v24.n2.a4.  Google Scholar

[9]

W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[10]

W. ChenC. Li and and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[11]

W. Chen, C. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co, 2019.  Google Scholar

[12]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[13]

W. Chen and S. Qi, Direct methods on fractional equations, Disc. Cont. Dyna. Sys., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.  Google Scholar

[14]

S. DipierroN. Soave and E. Valdinoci, On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.  doi: 10.1007/s00208-016-1487-x.  Google Scholar

[15]

Z. Liu and W. Chen, Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains, arXiv: 1905.06493. Google Scholar

[16]

L. Wu and W. Chen, The sliding method for the fractional p-Laplacian, Adv. Math., 361 (2020), 106933. doi: 10.1016/j.aim.2019.106933.  Google Scholar

[17]

L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities, arXiv: 1905.09999. Google Scholar

[1]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[2]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[3]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[4]

Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015

[5]

Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002

[6]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[7]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[8]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[9]

Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060

[10]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[11]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[12]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[13]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[14]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[15]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[16]

Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218

[17]

Ziwei Zhou, Jiguang Bao, Bo Wang. A Liouville theorem of parabolic Monge-AmpÈre equations in half-space. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020331

[18]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[19]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[20]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (40)
  • HTML views (46)
  • Cited by (0)

Other articles
by authors

[Back to Top]