December  2020, 19(12): 5305-5335. doi: 10.3934/cpaa.2020240

Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency

College of Sciences, Hohai University, No.1 Xikang Road, Nanjing, Jiangsu, 210098, China

* Corresponding author

Received  October 2019 Revised  July 2020 Published  September 2020

Fund Project: The second author was supported by the Fundamental Research Funds for the Central Universities(Grant B200202004) and China Postdoctoral Science Foundation (Grant 2019M650094)

In this paper, we first study the strong Birkhoff Ergodic Theorem for subharmonic functions with the Brjuno-Rüssmann shift on the Torus. Then, we apply it to prove the large deviation theorems for the finite scale Dirichlet determinants of quasi-periodic analytic Jacobi operators with this frequency. It shows that the Brjuno-Rüssmann function, which reflects the irrationality of the frequency, plays the key role in these theorems via the smallest deviation. At last, as an application, we obtain a distribution of the eigenvalues of the Jacobi operators with Dirichlet boundary conditions, which also depends on the smallest deviation, essentially on the irrationality of the frequency.

Citation: Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240
References:
[1]

A. Avila and S. Jitomirskaya, The Ten Martini Problem, Ann. Math., 170 (2009), 303-342.  doi: 10.4007/annals.2009.170.303.  Google Scholar

[2]

A. AvilaS. Jitomirskaya and C. A. Marx, Spectral theory of extended Harper's model and a question by Erdös and Szekeres, Inv. Math., 210 (2017), 1-57.  doi: 10.1016/j.aim.2017.08.026.  Google Scholar

[3]

A. Avila, Y. Last, M. Shamis and Q. Zhou, On the abominable properties of the Almost Mathieu operator with well approximated frequencies, In preparation. Google Scholar

[4]

A. AvilaJ. You and Z. Zhou, Sharp Phase transitions for the almost Mathieu operator, Duke Math., 166 (2017), 2697-2718.  doi: 10.1215/00127094-2017-0013.  Google Scholar

[5]

J. Bourgain and S. Jitomirskaya, Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Stat. Phys., 108 (2002), 1203-1218.  doi: 10.1023/A:1019751801035.  Google Scholar

[6]

J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. Math., 152 (2000), 835-879.  doi: 10.2307/2661356.  Google Scholar

[7]

J. BourgainM. Goldstein and W. Schlag, Anderson localization for Schrödinger operators on $\mathbb{Z}^2$ with potentials given by the skew-shift, Commun. Math. Phys., 220 (2001), 583-621.  doi: 10.1007/PL00005570.  Google Scholar

[8]

I. Binder and M. Voda, An estimate on the number of eigenvalues of a quasiperiodic Jacobi matrix of size n contained in an interval of size $n^{-C}$, J. Spectr. Theory, 3 (2013), 1-45.  doi: 10.4171/JST/36.  Google Scholar

[9]

I. Binder and M. Voda, On optimal separation of eigenvalues for a quasiperiodic Jacobi matrix, Commun. Math. Phys., 325 (2014), 1063-1106. doi: 10.1007/s00220-013-1836-5.  Google Scholar

[10]

M. GoldsteinD. DamanikW. Schlag and M. Voda, Homogeneity of the spectrum for quasi-perioidic Schrödinger operators, J. Eur. Math. Soc., 20 (2018), 3073-3111.  doi: 10.4171/JEMS/829.  Google Scholar

[11]

M. Goldstein and W. Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. Math., 2 (2001), 155-203.  doi: 10.2307/3062114.  Google Scholar

[12]

M. Goldstein and W. Schlag, Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues, Geom. Funct. Anal., 18 (2008), 755-869.  doi: 10.1007/s00039-008-0670-y.  Google Scholar

[13]

M. Goldstein and W. Schlag, On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations, Ann. Math., 173 (2011), 337-475.  doi: 10.4007/annals.2011.173.1.9.  Google Scholar

[14]

R. Han, Dry Ten Martini problem for the non-self-dual extended Harper's model, Trans. Am. Math. Soc., 370 (2018), 197-217.  doi: 10.1090/tran/6989.  Google Scholar

[15]

R. Han and S. Zhang, Optimal Large Deviation Estimates and Hölder Regularity of the Lyapunov Exponents for Quasi-periodic Schrödinger Cocycles, arXiv: 1803.02035 Google Scholar

[16]

S. JitomirskayaD. A. Koslover and M. S. Schulteis, Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles, Ergod. Theor. Dyn. Syst., 29 (2009), 1881-1905.  doi: 10.1017/S0143385709000704.  Google Scholar

[17]

S. JitomirskayaD. A. Koslover and M. S. Schulteis, Localization for a family of one-dimensional quasiperiodic operators of magnetic origin, Ann. Henri. Poincar., 6 (2005), 103-125.  doi: 10.1007/s00023-005-0200-5.  Google Scholar

[18]

S. Jitomirskaya and C. A. Marx, Continuity of the Lyapunov Exponent for analytic quasi-perodic cocycles with singularities, J. Fix. Point Theory A., 10 (2011), 129-146.  doi: 10.1007/s11784-011-0055-y.  Google Scholar

[19]

Ya. B. Levin, Lectures on Entire Functions, AMS, Providence, RI, 1996.  Google Scholar

[20]

K. Tao, Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators, Bulletin de la SMF, 142 (2014), 635-671.  doi: 10.24033/bsmf.2675.  Google Scholar

[21]

K. Tao, Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles, arXiv: 1805.00431. Google Scholar

[22]

J. You and S. Zhang, Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycles with week Liouville frequency, Ergod. Theor. Dyn. Syst., 34 (2014), 1395-1408.  doi: 10.1017/etds.2013.4.  Google Scholar

show all references

References:
[1]

A. Avila and S. Jitomirskaya, The Ten Martini Problem, Ann. Math., 170 (2009), 303-342.  doi: 10.4007/annals.2009.170.303.  Google Scholar

[2]

A. AvilaS. Jitomirskaya and C. A. Marx, Spectral theory of extended Harper's model and a question by Erdös and Szekeres, Inv. Math., 210 (2017), 1-57.  doi: 10.1016/j.aim.2017.08.026.  Google Scholar

[3]

A. Avila, Y. Last, M. Shamis and Q. Zhou, On the abominable properties of the Almost Mathieu operator with well approximated frequencies, In preparation. Google Scholar

[4]

A. AvilaJ. You and Z. Zhou, Sharp Phase transitions for the almost Mathieu operator, Duke Math., 166 (2017), 2697-2718.  doi: 10.1215/00127094-2017-0013.  Google Scholar

[5]

J. Bourgain and S. Jitomirskaya, Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Stat. Phys., 108 (2002), 1203-1218.  doi: 10.1023/A:1019751801035.  Google Scholar

[6]

J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. Math., 152 (2000), 835-879.  doi: 10.2307/2661356.  Google Scholar

[7]

J. BourgainM. Goldstein and W. Schlag, Anderson localization for Schrödinger operators on $\mathbb{Z}^2$ with potentials given by the skew-shift, Commun. Math. Phys., 220 (2001), 583-621.  doi: 10.1007/PL00005570.  Google Scholar

[8]

I. Binder and M. Voda, An estimate on the number of eigenvalues of a quasiperiodic Jacobi matrix of size n contained in an interval of size $n^{-C}$, J. Spectr. Theory, 3 (2013), 1-45.  doi: 10.4171/JST/36.  Google Scholar

[9]

I. Binder and M. Voda, On optimal separation of eigenvalues for a quasiperiodic Jacobi matrix, Commun. Math. Phys., 325 (2014), 1063-1106. doi: 10.1007/s00220-013-1836-5.  Google Scholar

[10]

M. GoldsteinD. DamanikW. Schlag and M. Voda, Homogeneity of the spectrum for quasi-perioidic Schrödinger operators, J. Eur. Math. Soc., 20 (2018), 3073-3111.  doi: 10.4171/JEMS/829.  Google Scholar

[11]

M. Goldstein and W. Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. Math., 2 (2001), 155-203.  doi: 10.2307/3062114.  Google Scholar

[12]

M. Goldstein and W. Schlag, Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues, Geom. Funct. Anal., 18 (2008), 755-869.  doi: 10.1007/s00039-008-0670-y.  Google Scholar

[13]

M. Goldstein and W. Schlag, On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations, Ann. Math., 173 (2011), 337-475.  doi: 10.4007/annals.2011.173.1.9.  Google Scholar

[14]

R. Han, Dry Ten Martini problem for the non-self-dual extended Harper's model, Trans. Am. Math. Soc., 370 (2018), 197-217.  doi: 10.1090/tran/6989.  Google Scholar

[15]

R. Han and S. Zhang, Optimal Large Deviation Estimates and Hölder Regularity of the Lyapunov Exponents for Quasi-periodic Schrödinger Cocycles, arXiv: 1803.02035 Google Scholar

[16]

S. JitomirskayaD. A. Koslover and M. S. Schulteis, Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles, Ergod. Theor. Dyn. Syst., 29 (2009), 1881-1905.  doi: 10.1017/S0143385709000704.  Google Scholar

[17]

S. JitomirskayaD. A. Koslover and M. S. Schulteis, Localization for a family of one-dimensional quasiperiodic operators of magnetic origin, Ann. Henri. Poincar., 6 (2005), 103-125.  doi: 10.1007/s00023-005-0200-5.  Google Scholar

[18]

S. Jitomirskaya and C. A. Marx, Continuity of the Lyapunov Exponent for analytic quasi-perodic cocycles with singularities, J. Fix. Point Theory A., 10 (2011), 129-146.  doi: 10.1007/s11784-011-0055-y.  Google Scholar

[19]

Ya. B. Levin, Lectures on Entire Functions, AMS, Providence, RI, 1996.  Google Scholar

[20]

K. Tao, Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators, Bulletin de la SMF, 142 (2014), 635-671.  doi: 10.24033/bsmf.2675.  Google Scholar

[21]

K. Tao, Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles, arXiv: 1805.00431. Google Scholar

[22]

J. You and S. Zhang, Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycles with week Liouville frequency, Ergod. Theor. Dyn. Syst., 34 (2014), 1395-1408.  doi: 10.1017/etds.2013.4.  Google Scholar

[1]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[2]

Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, 2021, 20 (2) : 467-494. doi: 10.3934/cpaa.2020222

[3]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021004

[4]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[5]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[6]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[7]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[8]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[9]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021008

[10]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[11]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002

[12]

Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021003

[13]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[14]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[15]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[16]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[17]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[18]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[19]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[20]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (79)
  • HTML views (102)
  • Cited by (0)

Other articles
by authors

[Back to Top]