• Previous Article
    Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains
  • CPAA Home
  • This Issue
  • Next Article
    Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency
December  2020, 19(12): 5337-5365. doi: 10.3934/cpaa.2020241

Approximations of stochastic 3D tamed Navier-Stokes equations

1. 

MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Hunan, 410081, China

2. 

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, China

* Corresponding author

Received  January 2020 Revised  July 2020 Published  December 2020 Early access  September 2020

Fund Project: This work was supported by NSFC (No. 11801032, 11971227, 11501195, 11871476). Hunan Provincial Natural Science Foundation of China (No. 2019JJ50377). Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, CAS (No. 2008DP173182). Beijing Institute of Technology Research Fund Program for Young Scholars. The Construct Program of the Key Discipline in Hunan Province

In this paper, we are concerned with 3D tamed Navier-Stokes equations with periodic boundary conditions, which can be viewed as an approximation of the classical 3D Navier-Stokes equations. We show that the strong solution of 3D tamed Navier-Stokes equations driven by Poisson random measure converges weakly to the strong solution of 3D tamed Navier-Stokes equations driven by Gaussian noise on the state space $ \mathcal{D}([0, T];\mathbb{H}^1) $.

Citation: Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241
References:
[1]

D. Aldous, Stopping times and tightness, Ann. Probab., 6 (1978), 335-340.  doi: 10.1214/aop/1176995579.

[2]

P. Billingsley, Convergence of Probability Measure, 2$^{nd}$ edition, John Wiley & Sons, Inc., New York, 1999. doi: 10.1002/9780470316962.

[3]

Z. Brzeźniak and G. Dhariwal, Stochastic Tamed Navier-Stokes Equations on $\mathbb{R}^3$: The Existence and the Uniqueness of Solutions and the Existence of an Invariant Measure, J. Math. Fluid Mech., 22 (2020), 54 pp. doi: 10.1007/s00021-020-0480-z.

[4]

Z. BrzeźniakE. Hausenblas and J. Zhu, 2D Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139.  doi: 10.1016/j.na.2012.10.011.

[5]

A. Bensoussan and R. Temam, Équations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222.  doi: 10.1016/0022-1236(73)90045-1.

[6]

A. BudhirajaP. Dupuis and V. Maroulas, Variational representations for continuous time processes, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), 725-747.  doi: 10.1214/10-AIHP382.

[7]

Z. BrzézniakW. Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.  doi: 10.1016/j.nonrwa.2013.12.005.

[8]

G. Di Nunno and T. Zhang, Approximations of stochastic partial differential equations, Ann. Appl. Probab., 26 (2016), 1443-1466.  doi: 10.1214/15-AAP1122.

[9]

Z. DongJ. XiongJ. Zhai and T. Zhang, A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, J. Funct. Anal., 272 (2017), 227-254.  doi: 10.1016/j.jfa.2016.10.012.

[10]

Z. Dong and R. Zhang, 3D tamed Navier-Stokes equations driven by multiplicative Lévy noise: Existence, uniqueness and large deviations, J. Math. Anal. Appl., 492 (2020), 124404. doi: 10.1016/j.jmaa.2020.124404.

[11]

R. Durrett, Probability: Theory and Examples, 4$^{nd}$ edition, Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511779398.

[12]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.

[13]

A. Ichikawa, Some inequalities for martingales and stochastic convolutions, Stoch. Anal. Appl., 4 (1986), 329-339. doi: 10.1080/07362998608809094.

[14]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2$^{nd}$ edition, North-Holland Mathematical Library, 1989.

[15]

O. Kallenberg, Foundations of Modern Probability, 2$^{nd}$ edition, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-4015-8.

[16]

P. L. Lions, Mathematical Topics in Fluid Mechanics, Clarendon Press, Oxford, 1996.

[17]

R. Mikulevicius and B. L. Rozovskii, Global $L^2$ solution of stochastic Navier-Stokes equations, Ann. Probab., 33 (2005), 137-176.  doi: 10.1214/009117904000000630.

[18]

M. T. MohanK. Sakthivel and S. S. Sritharan, Ergodicity for the 3D stochastic Navier-Stokes equations perturbed by Lévy noise, Math. Nachr., 292 (2019), 1056-1088.  doi: 10.1002/mana.201700339.

[19]

M. Röckner and T. Zhang, Stochastic 3D tamed Navier-Stokes equations: existence, uniqueness and small time large deviation principles, J. Differ. Equ., 252 (2012), 716-744.  doi: 10.1016/j.jde.2011.09.030.

[20]

M. RöcknerT. Zhang and X. Zhang, Large deviations for stochastic tamed 3D Navier-Stokes equations, Appl. Math. Optim., 61 (2010), 267-285.  doi: 10.1007/s00245-009-9089-6.

[21]

M. Röckner and X. Zhang, Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12 (2009), 525-549.  doi: 10.1142/S0219025709003859.

[22]

M. Röckner and X. Zhang, Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity, Probab. Theory Related Fields, 145 (2009), 211-267.  doi: 10.1007/s00440-008-0167-5.

[23]

B. L. Rozovskii, Stochastic Evolution Systems, Kluwer Academic, Dordrecht, 1990. doi: 10.1007/978-94-011-3830-7.

[24]

B. Schmalfuss, Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal., 28 (1997), 1545-1563.  doi: 10.1016/S0362-546X(96)00015-6.

[25]

S. Shang and T. Zhang, Approximations of stochastic Navier-Stokes equations, Stochastic Process. Appl., 130 (2020), 2407-2432.  doi: 10.1016/j.spa.2019.07.007.

[26]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: https://doi.org/10.1115/1.3424338.

[27]

X. Zhang, A tamed 3D Navier-Stokes equation in uniform $C^2-$domains, Nonlinear Anal., 71 (2009), 3093-3112.  doi: 10.1016/j.na.2009.01.221.

show all references

References:
[1]

D. Aldous, Stopping times and tightness, Ann. Probab., 6 (1978), 335-340.  doi: 10.1214/aop/1176995579.

[2]

P. Billingsley, Convergence of Probability Measure, 2$^{nd}$ edition, John Wiley & Sons, Inc., New York, 1999. doi: 10.1002/9780470316962.

[3]

Z. Brzeźniak and G. Dhariwal, Stochastic Tamed Navier-Stokes Equations on $\mathbb{R}^3$: The Existence and the Uniqueness of Solutions and the Existence of an Invariant Measure, J. Math. Fluid Mech., 22 (2020), 54 pp. doi: 10.1007/s00021-020-0480-z.

[4]

Z. BrzeźniakE. Hausenblas and J. Zhu, 2D Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139.  doi: 10.1016/j.na.2012.10.011.

[5]

A. Bensoussan and R. Temam, Équations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222.  doi: 10.1016/0022-1236(73)90045-1.

[6]

A. BudhirajaP. Dupuis and V. Maroulas, Variational representations for continuous time processes, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), 725-747.  doi: 10.1214/10-AIHP382.

[7]

Z. BrzézniakW. Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.  doi: 10.1016/j.nonrwa.2013.12.005.

[8]

G. Di Nunno and T. Zhang, Approximations of stochastic partial differential equations, Ann. Appl. Probab., 26 (2016), 1443-1466.  doi: 10.1214/15-AAP1122.

[9]

Z. DongJ. XiongJ. Zhai and T. Zhang, A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, J. Funct. Anal., 272 (2017), 227-254.  doi: 10.1016/j.jfa.2016.10.012.

[10]

Z. Dong and R. Zhang, 3D tamed Navier-Stokes equations driven by multiplicative Lévy noise: Existence, uniqueness and large deviations, J. Math. Anal. Appl., 492 (2020), 124404. doi: 10.1016/j.jmaa.2020.124404.

[11]

R. Durrett, Probability: Theory and Examples, 4$^{nd}$ edition, Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511779398.

[12]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.

[13]

A. Ichikawa, Some inequalities for martingales and stochastic convolutions, Stoch. Anal. Appl., 4 (1986), 329-339. doi: 10.1080/07362998608809094.

[14]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2$^{nd}$ edition, North-Holland Mathematical Library, 1989.

[15]

O. Kallenberg, Foundations of Modern Probability, 2$^{nd}$ edition, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-4015-8.

[16]

P. L. Lions, Mathematical Topics in Fluid Mechanics, Clarendon Press, Oxford, 1996.

[17]

R. Mikulevicius and B. L. Rozovskii, Global $L^2$ solution of stochastic Navier-Stokes equations, Ann. Probab., 33 (2005), 137-176.  doi: 10.1214/009117904000000630.

[18]

M. T. MohanK. Sakthivel and S. S. Sritharan, Ergodicity for the 3D stochastic Navier-Stokes equations perturbed by Lévy noise, Math. Nachr., 292 (2019), 1056-1088.  doi: 10.1002/mana.201700339.

[19]

M. Röckner and T. Zhang, Stochastic 3D tamed Navier-Stokes equations: existence, uniqueness and small time large deviation principles, J. Differ. Equ., 252 (2012), 716-744.  doi: 10.1016/j.jde.2011.09.030.

[20]

M. RöcknerT. Zhang and X. Zhang, Large deviations for stochastic tamed 3D Navier-Stokes equations, Appl. Math. Optim., 61 (2010), 267-285.  doi: 10.1007/s00245-009-9089-6.

[21]

M. Röckner and X. Zhang, Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12 (2009), 525-549.  doi: 10.1142/S0219025709003859.

[22]

M. Röckner and X. Zhang, Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity, Probab. Theory Related Fields, 145 (2009), 211-267.  doi: 10.1007/s00440-008-0167-5.

[23]

B. L. Rozovskii, Stochastic Evolution Systems, Kluwer Academic, Dordrecht, 1990. doi: 10.1007/978-94-011-3830-7.

[24]

B. Schmalfuss, Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal., 28 (1997), 1545-1563.  doi: 10.1016/S0362-546X(96)00015-6.

[25]

S. Shang and T. Zhang, Approximations of stochastic Navier-Stokes equations, Stochastic Process. Appl., 130 (2020), 2407-2432.  doi: 10.1016/j.spa.2019.07.007.

[26]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: https://doi.org/10.1115/1.3424338.

[27]

X. Zhang, A tamed 3D Navier-Stokes equation in uniform $C^2-$domains, Nonlinear Anal., 71 (2009), 3093-3112.  doi: 10.1016/j.na.2009.01.221.

[1]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[2]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[3]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[4]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[5]

Donatella Donatelli, Nóra Juhász. The primitive equations of the polluted atmosphere as a weak and strong limit of the 3D Navier-Stokes equations in downwind-matching coordinates. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2859-2892. doi: 10.3934/dcds.2022002

[6]

Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080

[7]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[8]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[9]

Alessio Falocchi, Filippo Gazzola. Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1185-1200. doi: 10.3934/dcds.2021151

[10]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[11]

Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193

[12]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[13]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure and Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[14]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[15]

Hakima Bessaih, María J. Garrido-Atienza. Longtime behavior for 3D Navier-Stokes equations with constant delays. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1931-1948. doi: 10.3934/cpaa.2020085

[16]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[17]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[18]

Fan Wu. Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor. Evolution Equations and Control Theory, 2021, 10 (3) : 511-518. doi: 10.3934/eect.2020078

[19]

Pan Zhang, Lan Huang, Rui Lu, Xin-Guang Yang. Pullback dynamics of a 3D modified Navier-Stokes equations with double delays. Electronic Research Archive, 2021, 29 (6) : 4137-4157. doi: 10.3934/era.2021076

[20]

Wei Shi, Xiaona Cui, Xuezhi Li, Xin-Guang Yang. Dynamics for the 3D incompressible Navier-Stokes equations with double time delays and damping. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021284

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (252)
  • HTML views (101)
  • Cited by (0)

Other articles
by authors

[Back to Top]