• Previous Article
    Weak well-posedness of hyperbolic boundary value problems in a strip: When instabilities do not reflect the geometry
  • CPAA Home
  • This Issue
  • Next Article
    A truncated real interpolation method and characterizations of screened Sobolev spaces
doi: 10.3934/cpaa.2020242

Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains

1. 

School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China

2. 

National Engineering Laboratory of Integrated Transportation, Big Data Application Technology, Chengdu 61756, China

* Corresponding author

Received  February 2020 Revised  July 2020 Published  September 2020

Fund Project: The first author is supported by the National Natural Science Foundation of China (grant No. 11701475, 1197130 and 11971394)

This article is concerned with the limiting behavior of dynamics of a class of non-autonomous stochastic partial differential equations driven by colored noise on unbounded thin domains. We first prove the existence of tempered pullback random attractors for the equations defined on $ (n+1) $-dimensional unbounded thin domains. Then, we show the upper semicontinuity of these attractors when the $ (n+1) $-dimensional unbounded thin domains collapse onto the $ n $-dimensional space $ \mathbb{R}^n $. Here, the tail estimates are utilized to deal with the non-compactness of Sobolev embeddings on unbounded domains.

Citation: Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020242
References:
[1]

L. Arnold, Random Dynamical Systems, Springer, New York, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[3]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[4]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[5]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes eqution with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[6]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.  Google Scholar

[7]

J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95.   Google Scholar

[8]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Differ. Equ., 31 (2019), 1341-1371. doi: 10.1007/s10884-017-9626-y.  Google Scholar

[9]

K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ. Equ., 251 (2011), 2853-2895.  doi: 10.1016/j.jde.2011.05.032.  Google Scholar

[10]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction diffusion equations on thin domains, J. Differ. Equ., 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.  Google Scholar

[11]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.  doi: 10.3934/dcds.2018009.  Google Scholar

[12]

D. Ruelle, Characteristic exponents for a viscous fluid sujectied to time dependent forces, Commun. Math. Phys., 93 (1884), 285-300.  Google Scholar

[13]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, (1992), 185–192. Google Scholar

[14]

L. ShiR. WangK. Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differ. Equ., 267 (2019), 4373-4409.  doi: 10.1016/j.jde.2019.05.002.  Google Scholar

[15]

L. Shi and X. Li, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on unbounded thin domains, J. Math. Phycs., 60 (2019), 082702. doi: 10.1063/1.5093890.  Google Scholar

[16]

J. ShenK. Lu and B. Wang, Convergence and center manifolds for differential equations driven by colored noise, Discrete Contin. Dynam. Systems, 39 (2019), 4797-4840.  doi: 10.3934/dcds.2019196.  Google Scholar

[17]

S. M. Ulam and J. von Neumann, Random egodic theorems, Bull. Amer. Math. Soc., 51 (1945), 660. doi: 10.1090/S0002-9904-1958-10189-5.  Google Scholar

[18]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[19]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[20]

R. WangR. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer, New York, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[3]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[4]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[5]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes eqution with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[6]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.  Google Scholar

[7]

J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95.   Google Scholar

[8]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Differ. Equ., 31 (2019), 1341-1371. doi: 10.1007/s10884-017-9626-y.  Google Scholar

[9]

K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ. Equ., 251 (2011), 2853-2895.  doi: 10.1016/j.jde.2011.05.032.  Google Scholar

[10]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction diffusion equations on thin domains, J. Differ. Equ., 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.  Google Scholar

[11]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.  doi: 10.3934/dcds.2018009.  Google Scholar

[12]

D. Ruelle, Characteristic exponents for a viscous fluid sujectied to time dependent forces, Commun. Math. Phys., 93 (1884), 285-300.  Google Scholar

[13]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, (1992), 185–192. Google Scholar

[14]

L. ShiR. WangK. Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differ. Equ., 267 (2019), 4373-4409.  doi: 10.1016/j.jde.2019.05.002.  Google Scholar

[15]

L. Shi and X. Li, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on unbounded thin domains, J. Math. Phycs., 60 (2019), 082702. doi: 10.1063/1.5093890.  Google Scholar

[16]

J. ShenK. Lu and B. Wang, Convergence and center manifolds for differential equations driven by colored noise, Discrete Contin. Dynam. Systems, 39 (2019), 4797-4840.  doi: 10.3934/dcds.2019196.  Google Scholar

[17]

S. M. Ulam and J. von Neumann, Random egodic theorems, Bull. Amer. Math. Soc., 51 (1945), 660. doi: 10.1090/S0002-9904-1958-10189-5.  Google Scholar

[18]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[19]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[20]

R. WangR. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.  Google Scholar

[1]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[2]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[3]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[4]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 187-208. doi: 10.3934/dcds.2018009

[5]

Dingshi Li, Xuemin Wang. Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, , () : -. doi: 10.3934/era.2020100

[6]

Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations & Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025

[7]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115

[8]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[9]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[10]

Renhai Wang, Yangrong Li, Bixiang Wang. Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4091-4126. doi: 10.3934/dcds.2019165

[11]

Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301

[12]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[13]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[14]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3717-3747. doi: 10.3934/dcds.2019151

[15]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[16]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[17]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[18]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[19]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[20]

Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (22)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]