\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains

  • * Corresponding author

    * Corresponding author 

The first author is supported by the National Natural Science Foundation of China (grant No. 11701475, 1197130 and 11971394)

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • This article is concerned with the limiting behavior of dynamics of a class of non-autonomous stochastic partial differential equations driven by colored noise on unbounded thin domains. We first prove the existence of tempered pullback random attractors for the equations defined on $ (n+1) $-dimensional unbounded thin domains. Then, we show the upper semicontinuity of these attractors when the $ (n+1) $-dimensional unbounded thin domains collapse onto the $ n $-dimensional space $ \mathbb{R}^n $. Here, the tail estimates are utilized to deal with the non-compactness of Sobolev embeddings on unbounded domains.

    Mathematics Subject Classification: Primary: 35B40; Secondary: 35B41, 37L30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. Arnold, Random Dynamical Systems, Springer, New York, 1998. doi: 10.1007/978-3-662-12878-7.
    [2] P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.
    [3] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.
    [4] H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341.  doi: 10.1007/BF02219225.
    [5] F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes eqution with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.
    [6] A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.
    [7] J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95. 
    [8] K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Differ. Equ., 31 (2019), 1341-1371. doi: 10.1007/s10884-017-9626-y.
    [9] K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ. Equ., 251 (2011), 2853-2895.  doi: 10.1016/j.jde.2011.05.032.
    [10] D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction diffusion equations on thin domains, J. Differ. Equ., 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.
    [11] D. LiK. LuB. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.  doi: 10.3934/dcds.2018009.
    [12] D. Ruelle, Characteristic exponents for a viscous fluid sujectied to time dependent forces, Commun. Math. Phys., 93 (1884), 285-300.
    [13] B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, (1992), 185–192.
    [14] L. ShiR. WangK. Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differ. Equ., 267 (2019), 4373-4409.  doi: 10.1016/j.jde.2019.05.002.
    [15] L. Shi and X. Li, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on unbounded thin domains, J. Math. Phycs., 60 (2019), 082702. doi: 10.1063/1.5093890.
    [16] J. ShenK. Lu and B. Wang, Convergence and center manifolds for differential equations driven by colored noise, Discrete Contin. Dynam. Systems, 39 (2019), 4797-4840.  doi: 10.3934/dcds.2019196.
    [17] S. M. Ulam and J. von Neumann, Random egodic theorems, Bull. Amer. Math. Soc., 51 (1945), 660. doi: 10.1090/S0002-9904-1958-10189-5.
    [18] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.
    [19] X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.
    [20] R. WangR. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.
  • 加载中
SHARE

Article Metrics

HTML views(1819) PDF downloads(216) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return