• Previous Article
    A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain
  • CPAA Home
  • This Issue
  • Next Article
    Approximations of stochastic 3D tamed Navier-Stokes equations
December  2020, 19(12): 5367-5386. doi: 10.3934/cpaa.2020242

Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains

School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China, National Engineering Laboratory of Integrated Transportation, Big Data Application Technology, Chengdu 61756, China

* Corresponding author

Received  February 2020 Revised  July 2020 Published  September 2020

Fund Project: The first author is supported by the National Natural Science Foundation of China (grant No. 11701475, 1197130 and 11971394)

This article is concerned with the limiting behavior of dynamics of a class of non-autonomous stochastic partial differential equations driven by colored noise on unbounded thin domains. We first prove the existence of tempered pullback random attractors for the equations defined on $ (n+1) $-dimensional unbounded thin domains. Then, we show the upper semicontinuity of these attractors when the $ (n+1) $-dimensional unbounded thin domains collapse onto the $ n $-dimensional space $ \mathbb{R}^n $. Here, the tail estimates are utilized to deal with the non-compactness of Sobolev embeddings on unbounded domains.

Citation: Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242
References:
[1]

L. Arnold, Random Dynamical Systems, Springer, New York, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[3]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[4]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[5]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes eqution with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[6]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.  Google Scholar

[7]

J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95.   Google Scholar

[8]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Differ. Equ., 31 (2019), 1341-1371. doi: 10.1007/s10884-017-9626-y.  Google Scholar

[9]

K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ. Equ., 251 (2011), 2853-2895.  doi: 10.1016/j.jde.2011.05.032.  Google Scholar

[10]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction diffusion equations on thin domains, J. Differ. Equ., 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.  Google Scholar

[11]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.  doi: 10.3934/dcds.2018009.  Google Scholar

[12]

D. Ruelle, Characteristic exponents for a viscous fluid sujectied to time dependent forces, Commun. Math. Phys., 93 (1884), 285-300.  Google Scholar

[13]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, (1992), 185–192. Google Scholar

[14]

L. ShiR. WangK. Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differ. Equ., 267 (2019), 4373-4409.  doi: 10.1016/j.jde.2019.05.002.  Google Scholar

[15]

L. Shi and X. Li, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on unbounded thin domains, J. Math. Phycs., 60 (2019), 082702. doi: 10.1063/1.5093890.  Google Scholar

[16]

J. ShenK. Lu and B. Wang, Convergence and center manifolds for differential equations driven by colored noise, Discrete Contin. Dynam. Systems, 39 (2019), 4797-4840.  doi: 10.3934/dcds.2019196.  Google Scholar

[17]

S. M. Ulam and J. von Neumann, Random egodic theorems, Bull. Amer. Math. Soc., 51 (1945), 660. doi: 10.1090/S0002-9904-1958-10189-5.  Google Scholar

[18]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[19]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[20]

R. WangR. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer, New York, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[3]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[4]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[5]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes eqution with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[6]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.  Google Scholar

[7]

J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95.   Google Scholar

[8]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Differ. Equ., 31 (2019), 1341-1371. doi: 10.1007/s10884-017-9626-y.  Google Scholar

[9]

K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ. Equ., 251 (2011), 2853-2895.  doi: 10.1016/j.jde.2011.05.032.  Google Scholar

[10]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction diffusion equations on thin domains, J. Differ. Equ., 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.  Google Scholar

[11]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.  doi: 10.3934/dcds.2018009.  Google Scholar

[12]

D. Ruelle, Characteristic exponents for a viscous fluid sujectied to time dependent forces, Commun. Math. Phys., 93 (1884), 285-300.  Google Scholar

[13]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, (1992), 185–192. Google Scholar

[14]

L. ShiR. WangK. Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differ. Equ., 267 (2019), 4373-4409.  doi: 10.1016/j.jde.2019.05.002.  Google Scholar

[15]

L. Shi and X. Li, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on unbounded thin domains, J. Math. Phycs., 60 (2019), 082702. doi: 10.1063/1.5093890.  Google Scholar

[16]

J. ShenK. Lu and B. Wang, Convergence and center manifolds for differential equations driven by colored noise, Discrete Contin. Dynam. Systems, 39 (2019), 4797-4840.  doi: 10.3934/dcds.2019196.  Google Scholar

[17]

S. M. Ulam and J. von Neumann, Random egodic theorems, Bull. Amer. Math. Soc., 51 (1945), 660. doi: 10.1090/S0002-9904-1958-10189-5.  Google Scholar

[18]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[19]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[20]

R. WangR. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.  Google Scholar

[1]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[2]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[3]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[4]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[5]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[11]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[12]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[13]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[16]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[17]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[18]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[19]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[20]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (59)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]