This article is concerned with the limiting behavior of dynamics of a class of non-autonomous stochastic partial differential equations driven by colored noise on unbounded thin domains. We first prove the existence of tempered pullback random attractors for the equations defined on $ (n+1) $-dimensional unbounded thin domains. Then, we show the upper semicontinuity of these attractors when the $ (n+1) $-dimensional unbounded thin domains collapse onto the $ n $-dimensional space $ \mathbb{R}^n $. Here, the tail estimates are utilized to deal with the non-compactness of Sobolev embeddings on unbounded domains.
Citation: |
[1] | L. Arnold, Random Dynamical Systems, Springer, New York, 1998. doi: 10.1007/978-3-662-12878-7. |
[2] | P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. |
[3] | H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. |
[4] | H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341. doi: 10.1007/BF02219225. |
[5] | F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes eqution with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083. |
[6] | A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720. doi: 10.3934/dcdsb.2018072. |
[7] | J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95. |
[8] | K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Differ. Equ., 31 (2019), 1341-1371. doi: 10.1007/s10884-017-9626-y. |
[9] | K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ. Equ., 251 (2011), 2853-2895. doi: 10.1016/j.jde.2011.05.032. |
[10] | D. Li, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction diffusion equations on thin domains, J. Differ. Equ., 262 (2017), 1575-1602. doi: 10.1016/j.jde.2016.10.024. |
[11] | D. Li, K. Lu, B. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208. doi: 10.3934/dcds.2018009. |
[12] | D. Ruelle, Characteristic exponents for a viscous fluid sujectied to time dependent forces, Commun. Math. Phys., 93 (1884), 285-300. |
[13] | B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, (1992), 185–192. |
[14] | L. Shi, R. Wang, K. Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differ. Equ., 267 (2019), 4373-4409. doi: 10.1016/j.jde.2019.05.002. |
[15] | L. Shi and X. Li, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on unbounded thin domains, J. Math. Phycs., 60 (2019), 082702. doi: 10.1063/1.5093890. |
[16] | J. Shen, K. Lu and B. Wang, Convergence and center manifolds for differential equations driven by colored noise, Discrete Contin. Dynam. Systems, 39 (2019), 4797-4840. doi: 10.3934/dcds.2019196. |
[17] | S. M. Ulam and J. von Neumann, Random egodic theorems, Bull. Amer. Math. Soc., 51 (1945), 660. doi: 10.1090/S0002-9904-1958-10189-5. |
[18] | B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. |
[19] | X. Wang, K. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2018), 378-424. doi: 10.1016/j.jde.2017.09.006. |
[20] | R. Wang, R. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126. doi: 10.3934/dcds.2019165. |