-
Previous Article
Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows
- CPAA Home
- This Issue
-
Next Article
Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity
The two-component Novikov-type systems with peaked solutions and $ H^1 $-conservation law
School of Mathematics and Statistics and Center for Nonlinear Studies, Ningbo University, Ningbo 315211, China |
In this paper, we provide a classification to the general two-component Novikov-type systems with cubic nonlinearities which admit multi-peaked solutions and $ H^1 $-conservation law. Local well-posedness and wave breaking of solutions to the Cauchy problem of a resulting system from the classification are studied. First, we carry out the classification of the general two-component Novikov-type system based on the existence of two peaked solutions and $ H^1 $-conservation law. The resulting systems contain the two-component integrable Novikov-type systems. Next, we discuss the local well-posedness of Cauchy problem to the resulting systems in Sobolev spaces $ H^s({\mathbb R}) $ with $ s>3/2 $, the approach is based on the new invariant properties, certain estimates for transport equations of the system. In addition, blow up and wave-breaking to the Cauchy problem of a system are studied.
References:
[1] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[2] |
A. Constantin,
The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[3] |
A. Constantin,
Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
|
[4] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[5] |
A. Constantin and J. Escher,
On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.
doi: 10.1007/PL00004793. |
[6] |
A. Constantin and J. Escher,
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa, 26 (1998), 303-328.
|
[7] |
A. Constantin and R.I. Ivanov,
On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.
doi: 10.1016/j.physleta.2008.10.050. |
[8] |
A. Constantin and D. Lannes,
The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[9] |
A. Constantin and W. Strauss,
Stability of peakons, Commun. Pure Appl. Math., 53 (2009), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C. |
[10] |
R. Danchin,
A note on well-posedness for Camassa-Holm equation, J. Differ. Equ., 196 (2003), 429-444.
doi: 10.1016/S0022-0396(03)00096-2. |
[11] |
A. Degasperis, D. D. Holm and A. W. Hone,
A new integral equation with peakon solutions, Theoret. Math. Phys., 133 (2002), 1463-1474.
doi: 10.1023/A:1021186408422. |
[12] |
A. S. Fokas, P. J. Olver and P. Rosenau,
A plethora of integrable bi-Hamiltonian equations, Nonlinear Differ. Equ., 26 (1996), 93-101.
doi: 10.1007/978-1-4612-2434-1_5. |
[13] |
B. Fuchssteiner,
Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Physica D, 95 (1996), 229-243.
doi: 10.1016/0167-2789(96)00048-6. |
[14] |
Y. Fu, Y. Liu and C. Z. Qu,
Well-posedness and blow-up solution for a modified two-component periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.
doi: 10.1007/s00208-010-0483-9. |
[15] |
Y. Fu and C. Z. Qu,
Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons, J. Math. Phys., 50 (2009), 1-25.
doi: 10.1063/1.3064810. |
[16] |
B. Fuchssteiner and A. S. Fokas,
Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4 (1981), 47-66.
doi: 10.1016/0167-2789(81)90004-X. |
[17] |
X. G. Geng and B. Xue,
An extension of integrable peakon equations with cubic nonlinearity, Nonlinearity, 22 (2009), 1847-1856.
doi: 10.1088/0951-7715/22/8/004. |
[18] |
A. Himonas and C. Holliman,
The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479.
doi: 10.1088/0951-7715/25/2/449. |
[19] |
A. Himonas and D. Mantzavinos,
The initial value problem for a Novikov system, J. Math. Phys., 57 (2016), 1-22.
doi: 10.1063/1.4959774. |
[20] |
D. D. Holm and R. I. Ivanov,
Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples, J. Phys. A, 43 (2010), 1-20.
doi: 10.1088/1751-8113/43/49/492001. |
[21] |
D. D. Holm and R. I. Ivanov,
Two-component CH system: inverse scattering, peakons and geometry, Inverse Probl., 27 (2011), 1-24.
doi: 10.1088/0266-5611/27/4/045013. |
[22] |
D. D. Holm, L. Ó Náraigh and C. Tronci,
Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E, 79 (2009), 1-25.
doi: 10.1103/PhysRevE.79.016601. |
[23] |
A. N. Hone, H. Lundmark and J. Szmigielski,
Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation, Dyn. Partial Differ. Equ., 6 (2009), 253-289.
doi: 10.4310/DPDE.2009.v6.n3.a3. |
[24] |
A. N. Hone and J. P. Wang,
Integrable peakon equations with cubic nonlinearity, J. Phys. A, 41 (2008), 1-11.
doi: 10.1088/1751-8113/41/37/372002. |
[25] |
R. S. Johnson,
Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: 10.1017/S0022112001007224. |
[26] |
J. Kang, X. C. Liu, P. J. Olver and C. Z. Qu,
Liouville correspondences between integrable hierarchies, SIGMA Symmetry Integrability Geom. Methods Appl., 13 (2017), 1-26.
doi: 10.3842/SIGMA.2017.035. |
[27] |
T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral theory and differential equations, Springer, Berlin, Heidelberg, (1975), 25–70.
doi: https://doi.org/10.1007/BFb0067080. |
[28] |
C. E. Kenig, G. G. Ponce and L. Vega,
A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[29] |
S. Y. Lai,
Global weak solutions to the Novikov equation, J. Funct. Anal., 265 (2013), 520-544.
doi: 10.1016/j.jfa.2013.05.022. |
[30] |
H. M. Li, Y. Q. Li and Y. Chen,
Bi-Hamiltonian structure of multi-component Novikov equation, J. Nonlinear Math. Phys., 21 (2014), 509-520.
doi: 10.1080/14029251.2014.975522. |
[31] |
Y. A. Li and P. J. Olver,
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equ., 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[32] |
X. C. Liu, Y. Liu and C. Z. Qu,
Stability of peakons for the Novikov equation, J. Math. Pures Appl., 101 (2014), 172-187.
doi: 10.1016/j.matpur.2013.05.007. |
[33] |
H. Lundmark and J. Szmigielski,
Dynamics of interlacing peakons in the Geng-Xue equation, J. Integr. Sys., 2 (2017), 1-65.
doi: 10.1093/integr/xyw014. |
[34] |
H. Lundmark and J. Szmigielski,
An inverse spectral problem related to the Geng-Xue two-component peakon equation, Mem. Amer. Math. Soc., 244 (2016), 1-87.
doi: 10.1090/memo/1155. |
[35] |
V. Novikov,
Generalizations of the Camassa–Holm equation, J. Phys. A, 42 (2009), 1-11.
doi: 10.1088/1751-8113/42/34/342002. |
[36] |
P. J. Olver and P. Rosenau,
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[37] |
C. Z. Qu and Y. Fu, Cauchy problem and peakons of a two-component Novikov system, Sci. China Math., (2019), 32pp.
doi: https://doi.org/10.1007/s11425-019-9557-6. |
[38] |
J. F. Song, C. Z. Qu and Z. J. Qiao,
A new integrable two-component system with cubic nonlinearity, J. Math. Phys., 52 (2011), 1-9.
doi: 10.1063/1.3530865. |
[39] |
F. Tiğlay, The periodic Cauchy problem for Novikov's equation, Int. Math. Res. Notes, 2011 (2011), 4633-4648. Google Scholar |
[40] |
X. L. Wu and Z. Y. Yin,
Well-posedness and global existence for the Novikov equation, Ann. Sc. Norm. Super. Pisa C1. Sci., 11 (2012), 707-727.
|
[41] |
Z. P. Xin and P. Zhang,
On the weak solutions to shallow water equations, Commun. Pure Appl. Math., 53 (2000), 1411-1433.
doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.3.CO;2-X. |
show all references
References:
[1] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[2] |
A. Constantin,
The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[3] |
A. Constantin,
Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
|
[4] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[5] |
A. Constantin and J. Escher,
On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.
doi: 10.1007/PL00004793. |
[6] |
A. Constantin and J. Escher,
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa, 26 (1998), 303-328.
|
[7] |
A. Constantin and R.I. Ivanov,
On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.
doi: 10.1016/j.physleta.2008.10.050. |
[8] |
A. Constantin and D. Lannes,
The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[9] |
A. Constantin and W. Strauss,
Stability of peakons, Commun. Pure Appl. Math., 53 (2009), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C. |
[10] |
R. Danchin,
A note on well-posedness for Camassa-Holm equation, J. Differ. Equ., 196 (2003), 429-444.
doi: 10.1016/S0022-0396(03)00096-2. |
[11] |
A. Degasperis, D. D. Holm and A. W. Hone,
A new integral equation with peakon solutions, Theoret. Math. Phys., 133 (2002), 1463-1474.
doi: 10.1023/A:1021186408422. |
[12] |
A. S. Fokas, P. J. Olver and P. Rosenau,
A plethora of integrable bi-Hamiltonian equations, Nonlinear Differ. Equ., 26 (1996), 93-101.
doi: 10.1007/978-1-4612-2434-1_5. |
[13] |
B. Fuchssteiner,
Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Physica D, 95 (1996), 229-243.
doi: 10.1016/0167-2789(96)00048-6. |
[14] |
Y. Fu, Y. Liu and C. Z. Qu,
Well-posedness and blow-up solution for a modified two-component periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.
doi: 10.1007/s00208-010-0483-9. |
[15] |
Y. Fu and C. Z. Qu,
Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons, J. Math. Phys., 50 (2009), 1-25.
doi: 10.1063/1.3064810. |
[16] |
B. Fuchssteiner and A. S. Fokas,
Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4 (1981), 47-66.
doi: 10.1016/0167-2789(81)90004-X. |
[17] |
X. G. Geng and B. Xue,
An extension of integrable peakon equations with cubic nonlinearity, Nonlinearity, 22 (2009), 1847-1856.
doi: 10.1088/0951-7715/22/8/004. |
[18] |
A. Himonas and C. Holliman,
The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479.
doi: 10.1088/0951-7715/25/2/449. |
[19] |
A. Himonas and D. Mantzavinos,
The initial value problem for a Novikov system, J. Math. Phys., 57 (2016), 1-22.
doi: 10.1063/1.4959774. |
[20] |
D. D. Holm and R. I. Ivanov,
Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples, J. Phys. A, 43 (2010), 1-20.
doi: 10.1088/1751-8113/43/49/492001. |
[21] |
D. D. Holm and R. I. Ivanov,
Two-component CH system: inverse scattering, peakons and geometry, Inverse Probl., 27 (2011), 1-24.
doi: 10.1088/0266-5611/27/4/045013. |
[22] |
D. D. Holm, L. Ó Náraigh and C. Tronci,
Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E, 79 (2009), 1-25.
doi: 10.1103/PhysRevE.79.016601. |
[23] |
A. N. Hone, H. Lundmark and J. Szmigielski,
Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation, Dyn. Partial Differ. Equ., 6 (2009), 253-289.
doi: 10.4310/DPDE.2009.v6.n3.a3. |
[24] |
A. N. Hone and J. P. Wang,
Integrable peakon equations with cubic nonlinearity, J. Phys. A, 41 (2008), 1-11.
doi: 10.1088/1751-8113/41/37/372002. |
[25] |
R. S. Johnson,
Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: 10.1017/S0022112001007224. |
[26] |
J. Kang, X. C. Liu, P. J. Olver and C. Z. Qu,
Liouville correspondences between integrable hierarchies, SIGMA Symmetry Integrability Geom. Methods Appl., 13 (2017), 1-26.
doi: 10.3842/SIGMA.2017.035. |
[27] |
T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral theory and differential equations, Springer, Berlin, Heidelberg, (1975), 25–70.
doi: https://doi.org/10.1007/BFb0067080. |
[28] |
C. E. Kenig, G. G. Ponce and L. Vega,
A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[29] |
S. Y. Lai,
Global weak solutions to the Novikov equation, J. Funct. Anal., 265 (2013), 520-544.
doi: 10.1016/j.jfa.2013.05.022. |
[30] |
H. M. Li, Y. Q. Li and Y. Chen,
Bi-Hamiltonian structure of multi-component Novikov equation, J. Nonlinear Math. Phys., 21 (2014), 509-520.
doi: 10.1080/14029251.2014.975522. |
[31] |
Y. A. Li and P. J. Olver,
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equ., 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[32] |
X. C. Liu, Y. Liu and C. Z. Qu,
Stability of peakons for the Novikov equation, J. Math. Pures Appl., 101 (2014), 172-187.
doi: 10.1016/j.matpur.2013.05.007. |
[33] |
H. Lundmark and J. Szmigielski,
Dynamics of interlacing peakons in the Geng-Xue equation, J. Integr. Sys., 2 (2017), 1-65.
doi: 10.1093/integr/xyw014. |
[34] |
H. Lundmark and J. Szmigielski,
An inverse spectral problem related to the Geng-Xue two-component peakon equation, Mem. Amer. Math. Soc., 244 (2016), 1-87.
doi: 10.1090/memo/1155. |
[35] |
V. Novikov,
Generalizations of the Camassa–Holm equation, J. Phys. A, 42 (2009), 1-11.
doi: 10.1088/1751-8113/42/34/342002. |
[36] |
P. J. Olver and P. Rosenau,
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[37] |
C. Z. Qu and Y. Fu, Cauchy problem and peakons of a two-component Novikov system, Sci. China Math., (2019), 32pp.
doi: https://doi.org/10.1007/s11425-019-9557-6. |
[38] |
J. F. Song, C. Z. Qu and Z. J. Qiao,
A new integrable two-component system with cubic nonlinearity, J. Math. Phys., 52 (2011), 1-9.
doi: 10.1063/1.3530865. |
[39] |
F. Tiğlay, The periodic Cauchy problem for Novikov's equation, Int. Math. Res. Notes, 2011 (2011), 4633-4648. Google Scholar |
[40] |
X. L. Wu and Z. Y. Yin,
Well-posedness and global existence for the Novikov equation, Ann. Sc. Norm. Super. Pisa C1. Sci., 11 (2012), 707-727.
|
[41] |
Z. P. Xin and P. Zhang,
On the weak solutions to shallow water equations, Commun. Pure Appl. Math., 53 (2000), 1411-1433.
doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.3.CO;2-X. |
[1] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[2] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[3] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021032 |
[4] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[5] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[6] |
Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022 |
[7] |
Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018 |
[8] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[9] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[10] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[11] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[12] |
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005 |
[13] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021060 |
[14] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[15] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[16] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[17] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[18] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[19] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[20] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]