December  2020, 19(12): 5475-5486. doi: 10.3934/cpaa.2020248

Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry

Univ. Littoral Côte d'Opale, UR2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées, F-62100, France

Received  March 2020 Revised  June 2020 Published  October 2020

In this article we investigate the possible losses of regularity of the solution for hyperbolic boundary value problems defined in the strip $ \mathbb{R}^{d-1}\times \left[0,1 \right] $.

This question has already been widely studied in the half-space geometry in which a full characterization is almost completed (see [16,7,6]). In this setting it is known that several behaviours are possible, for example, a loss of a derivative on the boundary only or a loss of a derivative on the boundary combined with one or a half loss in the interior.

Crudely speaking the question addressed here is "can several boundaries make the situation becomes worse?".

Here we focus our attention to one special case of loss (namely the elliptic degeneracy of [16]) and we show that (in terms of losses of regularity) the situation is exactly the same as the one described in the half-space, meaning that the instability does not meet the geometry. This result has to be compared with the one of [2] in which the geometry has a real impact on the behaviour of the solution.

Citation: Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248
References:
[1]

A. Benoit, Geometric optics expansions for linear hyperbolic boundary value problems and optimality of energy estimates for surface waves, Differ. Integral Equ., 27 (2014), 531-562.   Google Scholar

[2]

A. Benoit, WKB expansions for weakly well-posed hyperbolic boundary value problems in a strip: time depending loss of derivatives, preprint, https://hal.archives-ouvertes.fr/hal-02391809. Google Scholar

[3]

A. Benoit, Lower exponential strong well-posedness of hyperbolic boundary value problems in a strip, to appear in Indiana U. Math. J.. doi: 10.1512/iumj.2007.56.2851.  Google Scholar

[4]

S. Benzoni-GavageF. RoussetD. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1073-1104.  doi: 10.1017/S030821050000202X.  Google Scholar

[5] S. Benzoni-Gavage and D. Serre, Multidimensional hyperbolic partial differential equations, Oxford University Press, 2007.   Google Scholar
[6]

J. F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl., 84 (2005), 786-818.  doi: 10.1016/j.matpur.2004.10.005.  Google Scholar

[7]

J. F. Coulombel, Stabilité Multidimensionnelle D'interfaces Dynamiques. Application Aux Transitions De Phase Liquide-vapeur, Ph. D thesis, ENS Lyon, 2002. Google Scholar

[8]

J. F. Coulombel and O. Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems, Ann. Inst. Fourier (Grenoble), 60 (2010), 2183-2233.   Google Scholar

[9]

J. Chazarain and A. Piriou, Introduction À La Théorie Des équations Aux Dérivées Partielles Linéaires, Gauthier-Villars, Paris, 1981.  Google Scholar

[10]

J. F. Hersh, Mixed problems in several variables, J. Math. Mech., 12 (1963), 317-334.   Google Scholar

[11]

H. O. Kreiss, Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., 23 (1970), 277-298.  doi: 10.1002/cpa.3160230304.  Google Scholar

[12]

V. Lescarret, Wave transmission in dispersive media, Math. Models Methods Appl. Sci., 17 (2007), 485-535.  doi: 10.1142/S0218202507002005.  Google Scholar

[13]

A. Marcou, Rigorous weakly nonlinear geometric optics for surface waves, Asymptot. Anal., 69 (2010), 125-174.   Google Scholar

[14]

G. Métivier, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc., 32 (2000), 689-702.  doi: 10.1112/S0024609300007517.  Google Scholar

[15]

L. Sarason, On hyperbolic mixed problems, Arch. Rational Mech. Anal., 18 (1965), 310-334.  doi: 10.1007/BF00251670.  Google Scholar

[16]

M. Sablé-Tougeron, Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension $2$, Arch. Rational Mech. Anal., 101 (1988), 261-292.  doi: 10.1007/BF00253123.  Google Scholar

[17]

M. Williams, Nonlinear geometric optics for hyperbolic boundary problems, Commun. Partial Differ. Equ., 21 (1996), 1829-1895.  doi: 10.1080/03605309608821247.  Google Scholar

[18]

M. Williams, Boundary layers and glancing blow-up in nonlinear geometric optics, Ann. Sci. École Norm. Sup., 33 (2000), 383-432.  doi: 10.1016/S0012-9593(00)00116-6.  Google Scholar

show all references

References:
[1]

A. Benoit, Geometric optics expansions for linear hyperbolic boundary value problems and optimality of energy estimates for surface waves, Differ. Integral Equ., 27 (2014), 531-562.   Google Scholar

[2]

A. Benoit, WKB expansions for weakly well-posed hyperbolic boundary value problems in a strip: time depending loss of derivatives, preprint, https://hal.archives-ouvertes.fr/hal-02391809. Google Scholar

[3]

A. Benoit, Lower exponential strong well-posedness of hyperbolic boundary value problems in a strip, to appear in Indiana U. Math. J.. doi: 10.1512/iumj.2007.56.2851.  Google Scholar

[4]

S. Benzoni-GavageF. RoussetD. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1073-1104.  doi: 10.1017/S030821050000202X.  Google Scholar

[5] S. Benzoni-Gavage and D. Serre, Multidimensional hyperbolic partial differential equations, Oxford University Press, 2007.   Google Scholar
[6]

J. F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl., 84 (2005), 786-818.  doi: 10.1016/j.matpur.2004.10.005.  Google Scholar

[7]

J. F. Coulombel, Stabilité Multidimensionnelle D'interfaces Dynamiques. Application Aux Transitions De Phase Liquide-vapeur, Ph. D thesis, ENS Lyon, 2002. Google Scholar

[8]

J. F. Coulombel and O. Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems, Ann. Inst. Fourier (Grenoble), 60 (2010), 2183-2233.   Google Scholar

[9]

J. Chazarain and A. Piriou, Introduction À La Théorie Des équations Aux Dérivées Partielles Linéaires, Gauthier-Villars, Paris, 1981.  Google Scholar

[10]

J. F. Hersh, Mixed problems in several variables, J. Math. Mech., 12 (1963), 317-334.   Google Scholar

[11]

H. O. Kreiss, Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., 23 (1970), 277-298.  doi: 10.1002/cpa.3160230304.  Google Scholar

[12]

V. Lescarret, Wave transmission in dispersive media, Math. Models Methods Appl. Sci., 17 (2007), 485-535.  doi: 10.1142/S0218202507002005.  Google Scholar

[13]

A. Marcou, Rigorous weakly nonlinear geometric optics for surface waves, Asymptot. Anal., 69 (2010), 125-174.   Google Scholar

[14]

G. Métivier, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc., 32 (2000), 689-702.  doi: 10.1112/S0024609300007517.  Google Scholar

[15]

L. Sarason, On hyperbolic mixed problems, Arch. Rational Mech. Anal., 18 (1965), 310-334.  doi: 10.1007/BF00251670.  Google Scholar

[16]

M. Sablé-Tougeron, Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension $2$, Arch. Rational Mech. Anal., 101 (1988), 261-292.  doi: 10.1007/BF00253123.  Google Scholar

[17]

M. Williams, Nonlinear geometric optics for hyperbolic boundary problems, Commun. Partial Differ. Equ., 21 (1996), 1829-1895.  doi: 10.1080/03605309608821247.  Google Scholar

[18]

M. Williams, Boundary layers and glancing blow-up in nonlinear geometric optics, Ann. Sci. École Norm. Sup., 33 (2000), 383-432.  doi: 10.1016/S0012-9593(00)00116-6.  Google Scholar

[1]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[2]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[6]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[8]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[9]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[10]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[11]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[12]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[13]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[14]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[15]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[17]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[18]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[19]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[20]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (32)
  • HTML views (52)
  • Cited by (0)

Other articles
by authors

[Back to Top]