Advanced Search
Article Contents
Article Contents

Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry

Abstract Full Text(HTML) Related Papers Cited by
  • In this article we investigate the possible losses of regularity of the solution for hyperbolic boundary value problems defined in the strip $ \mathbb{R}^{d-1}\times \left[0,1 \right] $.

    This question has already been widely studied in the half-space geometry in which a full characterization is almost completed (see [16,7,6]). In this setting it is known that several behaviours are possible, for example, a loss of a derivative on the boundary only or a loss of a derivative on the boundary combined with one or a half loss in the interior.

    Crudely speaking the question addressed here is "can several boundaries make the situation becomes worse?".

    Here we focus our attention to one special case of loss (namely the elliptic degeneracy of [16]) and we show that (in terms of losses of regularity) the situation is exactly the same as the one described in the half-space, meaning that the instability does not meet the geometry. This result has to be compared with the one of [2] in which the geometry has a real impact on the behaviour of the solution.

    Mathematics Subject Classification: Primary: 35L50, 35B30; Secondary: 78A05.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Benoit, Geometric optics expansions for linear hyperbolic boundary value problems and optimality of energy estimates for surface waves, Differ. Integral Equ., 27 (2014), 531-562. 
    [2] A. Benoit, WKB expansions for weakly well-posed hyperbolic boundary value problems in a strip: time depending loss of derivatives, preprint, https://hal.archives-ouvertes.fr/hal-02391809.
    [3] A. Benoit, Lower exponential strong well-posedness of hyperbolic boundary value problems in a strip, to appear in Indiana U. Math. J.. doi: 10.1512/iumj.2007.56.2851.
    [4] S. Benzoni-GavageF. RoussetD. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1073-1104.  doi: 10.1017/S030821050000202X.
    [5] S. Benzoni-Gavage and  D. SerreMultidimensional hyperbolic partial differential equations, Oxford University Press, 2007. 
    [6] J. F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl., 84 (2005), 786-818.  doi: 10.1016/j.matpur.2004.10.005.
    [7] J. F. Coulombel, Stabilité Multidimensionnelle D'interfaces Dynamiques. Application Aux Transitions De Phase Liquide-vapeur, Ph. D thesis, ENS Lyon, 2002.
    [8] J. F. Coulombel and O. Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems, Ann. Inst. Fourier (Grenoble), 60 (2010), 2183-2233. 
    [9] J. Chazarain and A. Piriou, Introduction À La Théorie Des équations Aux Dérivées Partielles Linéaires, Gauthier-Villars, Paris, 1981.
    [10] J. F. Hersh, Mixed problems in several variables, J. Math. Mech., 12 (1963), 317-334. 
    [11] H. O. Kreiss, Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., 23 (1970), 277-298.  doi: 10.1002/cpa.3160230304.
    [12] V. Lescarret, Wave transmission in dispersive media, Math. Models Methods Appl. Sci., 17 (2007), 485-535.  doi: 10.1142/S0218202507002005.
    [13] A. Marcou, Rigorous weakly nonlinear geometric optics for surface waves, Asymptot. Anal., 69 (2010), 125-174. 
    [14] G. Métivier, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc., 32 (2000), 689-702.  doi: 10.1112/S0024609300007517.
    [15] L. Sarason, On hyperbolic mixed problems, Arch. Rational Mech. Anal., 18 (1965), 310-334.  doi: 10.1007/BF00251670.
    [16] M. Sablé-Tougeron, Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension $2$, Arch. Rational Mech. Anal., 101 (1988), 261-292.  doi: 10.1007/BF00253123.
    [17] M. Williams, Nonlinear geometric optics for hyperbolic boundary problems, Commun. Partial Differ. Equ., 21 (1996), 1829-1895.  doi: 10.1080/03605309608821247.
    [18] M. Williams, Boundary layers and glancing blow-up in nonlinear geometric optics, Ann. Sci. École Norm. Sup., 33 (2000), 383-432.  doi: 10.1016/S0012-9593(00)00116-6.
  • 加载中

Article Metrics

HTML views(405) PDF downloads(182) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint