December  2020, 19(12): 5475-5486. doi: 10.3934/cpaa.2020248

Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry

Univ. Littoral Côte d'Opale, UR2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées, F-62100, France

Received  March 2020 Revised  June 2020 Published  December 2020 Early access  October 2020

In this article we investigate the possible losses of regularity of the solution for hyperbolic boundary value problems defined in the strip $ \mathbb{R}^{d-1}\times \left[0,1 \right] $.

This question has already been widely studied in the half-space geometry in which a full characterization is almost completed (see [16,7,6]). In this setting it is known that several behaviours are possible, for example, a loss of a derivative on the boundary only or a loss of a derivative on the boundary combined with one or a half loss in the interior.

Crudely speaking the question addressed here is "can several boundaries make the situation becomes worse?".

Here we focus our attention to one special case of loss (namely the elliptic degeneracy of [16]) and we show that (in terms of losses of regularity) the situation is exactly the same as the one described in the half-space, meaning that the instability does not meet the geometry. This result has to be compared with the one of [2] in which the geometry has a real impact on the behaviour of the solution.

Citation: Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248
References:
[1]

A. Benoit, Geometric optics expansions for linear hyperbolic boundary value problems and optimality of energy estimates for surface waves, Differ. Integral Equ., 27 (2014), 531-562. 

[2]

A. Benoit, WKB expansions for weakly well-posed hyperbolic boundary value problems in a strip: time depending loss of derivatives, preprint, https://hal.archives-ouvertes.fr/hal-02391809.

[3]

A. Benoit, Lower exponential strong well-posedness of hyperbolic boundary value problems in a strip, to appear in Indiana U. Math. J.. doi: 10.1512/iumj.2007.56.2851.

[4]

S. Benzoni-GavageF. RoussetD. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1073-1104.  doi: 10.1017/S030821050000202X.

[5] S. Benzoni-Gavage and D. Serre, Multidimensional hyperbolic partial differential equations, Oxford University Press, 2007. 
[6]

J. F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl., 84 (2005), 786-818.  doi: 10.1016/j.matpur.2004.10.005.

[7]

J. F. Coulombel, Stabilité Multidimensionnelle D'interfaces Dynamiques. Application Aux Transitions De Phase Liquide-vapeur, Ph. D thesis, ENS Lyon, 2002.

[8]

J. F. Coulombel and O. Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems, Ann. Inst. Fourier (Grenoble), 60 (2010), 2183-2233. 

[9]

J. Chazarain and A. Piriou, Introduction À La Théorie Des équations Aux Dérivées Partielles Linéaires, Gauthier-Villars, Paris, 1981.

[10]

J. F. Hersh, Mixed problems in several variables, J. Math. Mech., 12 (1963), 317-334. 

[11]

H. O. Kreiss, Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., 23 (1970), 277-298.  doi: 10.1002/cpa.3160230304.

[12]

V. Lescarret, Wave transmission in dispersive media, Math. Models Methods Appl. Sci., 17 (2007), 485-535.  doi: 10.1142/S0218202507002005.

[13]

A. Marcou, Rigorous weakly nonlinear geometric optics for surface waves, Asymptot. Anal., 69 (2010), 125-174. 

[14]

G. Métivier, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc., 32 (2000), 689-702.  doi: 10.1112/S0024609300007517.

[15]

L. Sarason, On hyperbolic mixed problems, Arch. Rational Mech. Anal., 18 (1965), 310-334.  doi: 10.1007/BF00251670.

[16]

M. Sablé-Tougeron, Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension $2$, Arch. Rational Mech. Anal., 101 (1988), 261-292.  doi: 10.1007/BF00253123.

[17]

M. Williams, Nonlinear geometric optics for hyperbolic boundary problems, Commun. Partial Differ. Equ., 21 (1996), 1829-1895.  doi: 10.1080/03605309608821247.

[18]

M. Williams, Boundary layers and glancing blow-up in nonlinear geometric optics, Ann. Sci. École Norm. Sup., 33 (2000), 383-432.  doi: 10.1016/S0012-9593(00)00116-6.

show all references

References:
[1]

A. Benoit, Geometric optics expansions for linear hyperbolic boundary value problems and optimality of energy estimates for surface waves, Differ. Integral Equ., 27 (2014), 531-562. 

[2]

A. Benoit, WKB expansions for weakly well-posed hyperbolic boundary value problems in a strip: time depending loss of derivatives, preprint, https://hal.archives-ouvertes.fr/hal-02391809.

[3]

A. Benoit, Lower exponential strong well-posedness of hyperbolic boundary value problems in a strip, to appear in Indiana U. Math. J.. doi: 10.1512/iumj.2007.56.2851.

[4]

S. Benzoni-GavageF. RoussetD. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1073-1104.  doi: 10.1017/S030821050000202X.

[5] S. Benzoni-Gavage and D. Serre, Multidimensional hyperbolic partial differential equations, Oxford University Press, 2007. 
[6]

J. F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl., 84 (2005), 786-818.  doi: 10.1016/j.matpur.2004.10.005.

[7]

J. F. Coulombel, Stabilité Multidimensionnelle D'interfaces Dynamiques. Application Aux Transitions De Phase Liquide-vapeur, Ph. D thesis, ENS Lyon, 2002.

[8]

J. F. Coulombel and O. Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems, Ann. Inst. Fourier (Grenoble), 60 (2010), 2183-2233. 

[9]

J. Chazarain and A. Piriou, Introduction À La Théorie Des équations Aux Dérivées Partielles Linéaires, Gauthier-Villars, Paris, 1981.

[10]

J. F. Hersh, Mixed problems in several variables, J. Math. Mech., 12 (1963), 317-334. 

[11]

H. O. Kreiss, Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., 23 (1970), 277-298.  doi: 10.1002/cpa.3160230304.

[12]

V. Lescarret, Wave transmission in dispersive media, Math. Models Methods Appl. Sci., 17 (2007), 485-535.  doi: 10.1142/S0218202507002005.

[13]

A. Marcou, Rigorous weakly nonlinear geometric optics for surface waves, Asymptot. Anal., 69 (2010), 125-174. 

[14]

G. Métivier, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc., 32 (2000), 689-702.  doi: 10.1112/S0024609300007517.

[15]

L. Sarason, On hyperbolic mixed problems, Arch. Rational Mech. Anal., 18 (1965), 310-334.  doi: 10.1007/BF00251670.

[16]

M. Sablé-Tougeron, Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension $2$, Arch. Rational Mech. Anal., 101 (1988), 261-292.  doi: 10.1007/BF00253123.

[17]

M. Williams, Nonlinear geometric optics for hyperbolic boundary problems, Commun. Partial Differ. Equ., 21 (1996), 1829-1895.  doi: 10.1080/03605309608821247.

[18]

M. Williams, Boundary layers and glancing blow-up in nonlinear geometric optics, Ann. Sci. École Norm. Sup., 33 (2000), 383-432.  doi: 10.1016/S0012-9593(00)00116-6.

[1]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[2]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[3]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[4]

Matthias Eller. Loss of derivatives for hyperbolic boundary problems with constant coefficients. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1347-1361. doi: 10.3934/dcdsb.2018154

[5]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[6]

Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403

[7]

Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234

[8]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[9]

Mauro Garavello. Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[10]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[11]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[12]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[13]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations and Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[14]

Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627

[15]

G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205

[16]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[17]

Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations and Control Theory, 2022, 11 (3) : 837-867. doi: 10.3934/eect.2021028

[18]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations and Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3497-3528. doi: 10.3934/dcdss.2020442

[20]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (160)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]