December  2020, 19(12): 5509-5566. doi: 10.3934/cpaa.2020250

A truncated real interpolation method and characterizations of screened Sobolev spaces

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA

* Corresponding author

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: I. Tice was supported by an NSF CAREER Grant (DMS #1653161). N. Stevenson was supported by the summer research support provided by this grant

In this paper we prove structural and topological characterizations of the screened Sobolev spaces with screening functions bounded below and above by positive constants. We generalize a method of interpolation to the case of seminormed spaces. This method, which we call the truncated method, generates the screened Sobolev subfamily and a more general screened Besov scale. We then prove that the screened Besov spaces are equivalent to the sum of a Lebesgue space and a homogeneous Sobolev space and provide a Littlewood-Paley frequency space characterization.

Citation: Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250
References:
[1] R. A. Adams and John J. F. Fournier, Pure and Applied Mathematics, Elsevier/Academic Press, Amsterdam, second edition, 2003.   Google Scholar
[2]

Sergey V. AstashkinKonstantin V. Lykov and Mario Milman, Limiting interpolation spaces via extrapolation, J. Approx. Theory, 240 (2019), 16-70.  doi: 10.1016/j.jat.2018.09.007.  Google Scholar

[3] Jean BourgainH. Brezis and Petru Mironescu, Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001.   Google Scholar
[4]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s, p}$ when $s\uparrow1$ and applications, J. Anal. Math., 87 (2002), 77-101.  doi: 10.1007/BF02868470.  Google Scholar

[5]

Hajer Bahouri, Jean-Yves Chemin and Raphaël Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[6]

V. Benci and D. Fortunato, Weighted Sobolev spaces and the nonlinear Dirichlet problem in unbounded domains, Ann. Mat. Pura Appl., 121 (1979), 319-336.  doi: 10.1007/BF02412010.  Google Scholar

[7] Oleg V. BesovValentin P. Il'in and Sergey M. Nikol'skiǐ, Integral Representations of Functions and Imbedding Theorems, V. H. Winston & Sons, Washington, D. C., Halsted Press, New York-Toronto, Ont. London, 1978.   Google Scholar
[8] Oleg V. BesovValentin P. Il'in and Sergey M. Nikol'skiǐ, Integral Representations of Functions and Imbedding Theorems, V. H. Winston & Sons, Washington, D. C., Halsted Press, New York-Toronto, Ont. London, 1979.   Google Scholar
[9]

Jöran Bergh and Jörgen Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[10]

H. Brezis and Hoai-Minh Nguyen, Non-local functionals related to the total variation and connections with image processing, Ann. PDE, 4 (2018), 77pp. doi: 10.1007/s40818-018-0044-1.  Google Scholar

[11]

Melvyn S. Berger and Martin Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, Trans. Am. Math. Soc., 172 (1972), 261-278.  doi: 10.2307/1996347.  Google Scholar

[12]

Victor I. Burenkov, Sobolev Spaces on Domains, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998. doi: 10.1007/978-3-663-11374-4.  Google Scholar

[13]

Fernando CobosLuz M. Fernández-CabreraThomas Kühn and Tino Ullrich, On an extreme class of real interpolation spaces, J. Funct. Anal., 256 (2009), 2321-2366.  doi: 10.1016/j.jfa.2008.12.013.  Google Scholar

[14]

Qiang DuMax GunzburgerR. B. Lehoucq and Kun Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.  doi: 10.1137/110833294.  Google Scholar

[15]

Eleonora DiNezzaGiampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

D. E. Edmunds and W. D. Evans, Elliptic and degenerate-elliptic operators in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1973), 591-640.   Google Scholar

[17]

Matthieu FelsingerMoritz Kassmann and Paul Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809.  doi: 10.1007/s00209-014-1394-3.  Google Scholar

[18]

Patrick T. Flynn and Huy Q. Nguyen, The vanishing surface tension limit of the Muskat problem, arXiv: 2001.10473. Google Scholar

[19]

M. E. Gomez and M. Milman, Extrapolation spaces and almost-everywhere convergence of singular integrals, J. London Math. Soc., 34 (1986), 305-316.  doi: 10.1112/jlms/s2-34.2.305.  Google Scholar

[20]

Loukas Grafakos, Classical Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[21]

Loukas Grafakos, Modern Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1230-8.  Google Scholar

[22]

Pierre Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611972030.ch1.  Google Scholar

[23]

Jan Gustavsson, Interpolation of semi-norms, Technical report, Lund University, 1970. Google Scholar

[24]

Piotr Hajł asz and Agnieszka Kał amajska, Polynomial asymptotics and approximation of Sobolev functions, Studia Math., 113 (1995), 55-64.   Google Scholar

[25]

R. Hanks, Interpolation by the real method between BMO, $L^{\alpha }(0 < \alpha < \infty)$ and $H^{\alpha }(0 < \alpha < \infty)$, Indiana Univ. Math. J., 26 (1977), 679-689.  doi: 10.1512/iumj.1977.26.26054.  Google Scholar

[26]

Björn Jawerth and Mario Milman, Extrapolation theory with applications, Mem. Am. Math. Soc., 89 (1991), 82pp. doi: 10.1090/memo/0440.  Google Scholar

[27]

Alois Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985.  Google Scholar

[28]

Giovanni Leoni, A first course in Sobolev spaces, American Mathematical Society, Providence, RI, second edition, 2017.  Google Scholar

[29]

Giovanni Leoni and Ian Tice, Traces for homogeneous sobolev spaces in infinite strip-like domains, J. Funct. Anal., 277 (2019), 2288-2380.  doi: 10.1016/j.jfa.2019.01.005.  Google Scholar

[30]

Alessandra Lunardi, Interpolation Theory, Edizioni della Normale, Pisa, 2018. doi: 10.1007/978-88-7642-638-4.  Google Scholar

[31]

Vladimir Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Heidelberg, augmented edition, 2011. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[32]

V. Maz'yaM. Mitrea and T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, J. Anal. Math., 110 (2010), 167-239.  doi: 10.1007/s11854-010-0005-4.  Google Scholar

[33]

Jindřich Nečas, Direct Methods in the Theory of Elliptic Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-10455-8.  Google Scholar

[34]

Huy Q. Nguyen, On well-posedness of the Muskat problem with surface tension, arXiv: 1907.11552. Google Scholar

[35]

Huy Q. Nguyen and Benoît Pausader, A paradifferential approach for well-posedness of the muskat problem, Arch. Ration. Mech. Anal., 237 (2020) 25–100. doi: 10.1007/s00205-020-01494-7.  Google Scholar

[36]

J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de Matemática, No. 39. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.  Google Scholar

[37]

Jaak Peetre, New thoughts on Besov Spaces, Mathematics Department, Duke University, Durham, N. C., 1976.  Google Scholar

[38]

Augusto C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differ. Equ., 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.  Google Scholar

[39]

Augusto C. Ponce and Daniel Spector, On formulae decoupling the total variation of BV functions, Nonlinear Anal., 154 (2017), 241-257.  doi: 10.1016/j.na.2016.08.028.  Google Scholar

[40] Elias M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.   Google Scholar
[41]

Robert S. Strichartz, "Graph paper" trace characterizations of functions of finite energy, J. Anal. Math., 128 (2016), 239-260.  doi: 10.1007/s11854-016-0008-x.  Google Scholar

[42]

Gudrun Thater, Neumann problem in domains with outlets of bounded diameter, Acta Appl. Math., 73 (2002), 251-274.  doi: 10.1023/A:1019736224759.  Google Scholar

[43]

Angus Ellis Taylor and David C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, second edition, 1980.  Google Scholar

[44]

Hans Triebel, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[45]

Hans Triebel, Theory of Function Spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010.  Google Scholar

[46]

Kosaku Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[47]

Kun Zhou and Qiang Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48 (2010), 1759-1780.  doi: 10.1137/090781267.  Google Scholar

show all references

References:
[1] R. A. Adams and John J. F. Fournier, Pure and Applied Mathematics, Elsevier/Academic Press, Amsterdam, second edition, 2003.   Google Scholar
[2]

Sergey V. AstashkinKonstantin V. Lykov and Mario Milman, Limiting interpolation spaces via extrapolation, J. Approx. Theory, 240 (2019), 16-70.  doi: 10.1016/j.jat.2018.09.007.  Google Scholar

[3] Jean BourgainH. Brezis and Petru Mironescu, Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001.   Google Scholar
[4]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s, p}$ when $s\uparrow1$ and applications, J. Anal. Math., 87 (2002), 77-101.  doi: 10.1007/BF02868470.  Google Scholar

[5]

Hajer Bahouri, Jean-Yves Chemin and Raphaël Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[6]

V. Benci and D. Fortunato, Weighted Sobolev spaces and the nonlinear Dirichlet problem in unbounded domains, Ann. Mat. Pura Appl., 121 (1979), 319-336.  doi: 10.1007/BF02412010.  Google Scholar

[7] Oleg V. BesovValentin P. Il'in and Sergey M. Nikol'skiǐ, Integral Representations of Functions and Imbedding Theorems, V. H. Winston & Sons, Washington, D. C., Halsted Press, New York-Toronto, Ont. London, 1978.   Google Scholar
[8] Oleg V. BesovValentin P. Il'in and Sergey M. Nikol'skiǐ, Integral Representations of Functions and Imbedding Theorems, V. H. Winston & Sons, Washington, D. C., Halsted Press, New York-Toronto, Ont. London, 1979.   Google Scholar
[9]

Jöran Bergh and Jörgen Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[10]

H. Brezis and Hoai-Minh Nguyen, Non-local functionals related to the total variation and connections with image processing, Ann. PDE, 4 (2018), 77pp. doi: 10.1007/s40818-018-0044-1.  Google Scholar

[11]

Melvyn S. Berger and Martin Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, Trans. Am. Math. Soc., 172 (1972), 261-278.  doi: 10.2307/1996347.  Google Scholar

[12]

Victor I. Burenkov, Sobolev Spaces on Domains, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998. doi: 10.1007/978-3-663-11374-4.  Google Scholar

[13]

Fernando CobosLuz M. Fernández-CabreraThomas Kühn and Tino Ullrich, On an extreme class of real interpolation spaces, J. Funct. Anal., 256 (2009), 2321-2366.  doi: 10.1016/j.jfa.2008.12.013.  Google Scholar

[14]

Qiang DuMax GunzburgerR. B. Lehoucq and Kun Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.  doi: 10.1137/110833294.  Google Scholar

[15]

Eleonora DiNezzaGiampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

D. E. Edmunds and W. D. Evans, Elliptic and degenerate-elliptic operators in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1973), 591-640.   Google Scholar

[17]

Matthieu FelsingerMoritz Kassmann and Paul Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809.  doi: 10.1007/s00209-014-1394-3.  Google Scholar

[18]

Patrick T. Flynn and Huy Q. Nguyen, The vanishing surface tension limit of the Muskat problem, arXiv: 2001.10473. Google Scholar

[19]

M. E. Gomez and M. Milman, Extrapolation spaces and almost-everywhere convergence of singular integrals, J. London Math. Soc., 34 (1986), 305-316.  doi: 10.1112/jlms/s2-34.2.305.  Google Scholar

[20]

Loukas Grafakos, Classical Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[21]

Loukas Grafakos, Modern Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1230-8.  Google Scholar

[22]

Pierre Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611972030.ch1.  Google Scholar

[23]

Jan Gustavsson, Interpolation of semi-norms, Technical report, Lund University, 1970. Google Scholar

[24]

Piotr Hajł asz and Agnieszka Kał amajska, Polynomial asymptotics and approximation of Sobolev functions, Studia Math., 113 (1995), 55-64.   Google Scholar

[25]

R. Hanks, Interpolation by the real method between BMO, $L^{\alpha }(0 < \alpha < \infty)$ and $H^{\alpha }(0 < \alpha < \infty)$, Indiana Univ. Math. J., 26 (1977), 679-689.  doi: 10.1512/iumj.1977.26.26054.  Google Scholar

[26]

Björn Jawerth and Mario Milman, Extrapolation theory with applications, Mem. Am. Math. Soc., 89 (1991), 82pp. doi: 10.1090/memo/0440.  Google Scholar

[27]

Alois Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985.  Google Scholar

[28]

Giovanni Leoni, A first course in Sobolev spaces, American Mathematical Society, Providence, RI, second edition, 2017.  Google Scholar

[29]

Giovanni Leoni and Ian Tice, Traces for homogeneous sobolev spaces in infinite strip-like domains, J. Funct. Anal., 277 (2019), 2288-2380.  doi: 10.1016/j.jfa.2019.01.005.  Google Scholar

[30]

Alessandra Lunardi, Interpolation Theory, Edizioni della Normale, Pisa, 2018. doi: 10.1007/978-88-7642-638-4.  Google Scholar

[31]

Vladimir Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Heidelberg, augmented edition, 2011. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[32]

V. Maz'yaM. Mitrea and T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, J. Anal. Math., 110 (2010), 167-239.  doi: 10.1007/s11854-010-0005-4.  Google Scholar

[33]

Jindřich Nečas, Direct Methods in the Theory of Elliptic Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-10455-8.  Google Scholar

[34]

Huy Q. Nguyen, On well-posedness of the Muskat problem with surface tension, arXiv: 1907.11552. Google Scholar

[35]

Huy Q. Nguyen and Benoît Pausader, A paradifferential approach for well-posedness of the muskat problem, Arch. Ration. Mech. Anal., 237 (2020) 25–100. doi: 10.1007/s00205-020-01494-7.  Google Scholar

[36]

J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de Matemática, No. 39. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.  Google Scholar

[37]

Jaak Peetre, New thoughts on Besov Spaces, Mathematics Department, Duke University, Durham, N. C., 1976.  Google Scholar

[38]

Augusto C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differ. Equ., 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.  Google Scholar

[39]

Augusto C. Ponce and Daniel Spector, On formulae decoupling the total variation of BV functions, Nonlinear Anal., 154 (2017), 241-257.  doi: 10.1016/j.na.2016.08.028.  Google Scholar

[40] Elias M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.   Google Scholar
[41]

Robert S. Strichartz, "Graph paper" trace characterizations of functions of finite energy, J. Anal. Math., 128 (2016), 239-260.  doi: 10.1007/s11854-016-0008-x.  Google Scholar

[42]

Gudrun Thater, Neumann problem in domains with outlets of bounded diameter, Acta Appl. Math., 73 (2002), 251-274.  doi: 10.1023/A:1019736224759.  Google Scholar

[43]

Angus Ellis Taylor and David C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, second edition, 1980.  Google Scholar

[44]

Hans Triebel, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[45]

Hans Triebel, Theory of Function Spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010.  Google Scholar

[46]

Kosaku Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[47]

Kun Zhou and Qiang Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48 (2010), 1759-1780.  doi: 10.1137/090781267.  Google Scholar

[1]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020397

[2]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[5]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[6]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[7]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[8]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[9]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[10]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[11]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[12]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

[13]

Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021020

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[16]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (56)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]