doi: 10.3934/cpaa.2020250

A truncated real interpolation method and characterizations of screened Sobolev spaces

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA

* Corresponding author

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: I. Tice was supported by an NSF CAREER Grant (DMS #1653161). N. Stevenson was supported by the summer research support provided by this grant

In this paper we prove structural and topological characterizations of the screened Sobolev spaces with screening functions bounded below and above by positive constants. We generalize a method of interpolation to the case of seminormed spaces. This method, which we call the truncated method, generates the screened Sobolev subfamily and a more general screened Besov scale. We then prove that the screened Besov spaces are equivalent to the sum of a Lebesgue space and a homogeneous Sobolev space and provide a Littlewood-Paley frequency space characterization.

Citation: Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020250
References:
[1] R. A. Adams and John J. F. Fournier, Sobolev Spaces, volume 140 of Pure and Applied Mathematics, Elsevier/Academic Press, Amsterdam, second edition, 2003.   Google Scholar
[2]

Sergey V. AstashkinKonstantin V. Lykov and Mario Milman, Limiting interpolation spaces via extrapolation, J. Approx. Theory, 240 (2019), 16-70.  doi: 10.1016/j.jat.2018.09.007.  Google Scholar

[3]

Jean Bourgain, H. Brezis and Petru Mironescu. Another look at Sobolev spaces. Optimal control and partial differential equations, pages 439–455. IOS, Amsterdam, 2001.  Google Scholar

[4]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s, p}$ when $s\uparrow1$ and applications, J. Anal. Math, 87 (2002), 77-101.  doi: 10.1007/BF02868470.  Google Scholar

[5]

Hajer Bahouri, Jean-Yves Chemin and Raphaël Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[6]

V. Benci and D. Fortunato, Weighted Sobolev spaces and the nonlinear Dirichlet problem in unbounded domains, Ann. Mat. Pura Appl, 121 (1979), 319-336.  doi: 10.1007/BF02412010.  Google Scholar

[7]

Oleg V. Besov, Valentin P. Il'in and Sergey M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, V. H. Winston & Sons, Washington, D. C., Halsted Press, New York-Toronto, Ont. London, 1978.  Google Scholar

[8]

Oleg V. Besov, Valentin P. Il'in and Sergey M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems. Vol. Ⅱ. V. H. Winston & Sons, Washington, D. C.; Halsted Press [John Wiley & Sons], New York-Toronto, Ont. London, 1979.  Google Scholar

[9]

Jöran Bergh and Jörgen Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[10]

H. Brezis and Hoai-Minh Nguyen. Non-local functionals related to the total variation and connections with image processing, Ann. PDE, 4(1): Art. 9, 77, 2018. doi: 10.1007/s40818-018-0044-1.  Google Scholar

[11]

Melvyn S. Berger and Martin Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, Trans. Am. Math. Soc, 172 (1972), 261-278.  doi: 10.2307/1996347.  Google Scholar

[12]

Victor I. Burenkov, Sobolev Spaces on Domains, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998. doi: 10.1007/978-3-663-11374-4.  Google Scholar

[13]

Fernando CobosLuz M. Fernández-CabreraThomas Kühn and Tinono Ullrich, On an extreme class of real interpolation spaces, J. Funct. Anal, 256 (2009), 2321-2366.  doi: 10.1016/j.jfa.2008.12.013.  Google Scholar

[14]

Qiang DuMax GunzburgerR. B. Lehoucq and Kun Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev, 54 (2012), 667-696.  doi: 10.1137/110833294.  Google Scholar

[15]

Eleonora DiNezzaGiampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

D. E. Edmunds and W. D. Evans, Elliptic and degenerate-elliptic operators in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci, 27 (1973), 591-640.   Google Scholar

[17]

Matthieu FelsingerMoritz Kassmann and Paul Voigt, The Dirichlet problem for nonlocal operators, Math. Z, 279 (2015), 779-809.  doi: 10.1007/s00209-014-1394-3.  Google Scholar

[18]

Patrick T. Flynn and Huy Q. Nguyen. The vanishing surface tension limit of the Muskat problem, arXiv: 2001.10473. Google Scholar

[19]

M. E. Gomez and M. Milman. Extrapolation spaces and almost-everywhere convergence of singular integrals, J. London Math. Soc. (2), 34(2): 305–316, 1986. doi: 10.1112/jlms/s2-34.2.305.  Google Scholar

[20]

Loukas Grafakos, Classical Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[21]

Loukas Grafakos, Modern Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1230-8.  Google Scholar

[22]

Pierre Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611972030.ch1.  Google Scholar

[23]

Jan Gustavsson, Interpolation of semi-norms, Technical report, Lund University, 1970. Google Scholar

[24]

Piotr Hajł asz and Agnieszka Kał amajska, Polynomial asymptotics and approximation of Sobolev functions, Studia Math, 113 (1995), 55-64.   Google Scholar

[25]

R. Hanks, Interpolation by the real method between BMO, $L^{\alpha }(0<\alpha <\infty)$ and $H^{\alpha }(0<\alpha <\infty)$, Indiana Univ. Math. J, 26 (1977), 679-689.  doi: 10.1512/iumj.1977.26.26054.  Google Scholar

[26]

Björn Jawerth and Mario Milman. Extrapolation theory with applications, Mem. Am. Math. Soc., 89 (1991), ⅳ+82pp. doi: 10.1090/memo/0440.  Google Scholar

[27]

Alois Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication. John Wiley & Sons, Inc. New York, 1985.  Google Scholar

[28]

Giovanni Leoni, A first course in Sobolev spaces, American Mathematical Society, Providence, RI, second edition, 2017.  Google Scholar

[29]

Giovanni Leoni and Ian Tice, Traces for homogeneous sobolev spaces in infinite strip-like domains, J. Funct. Anal, 277 (2019), 2288-2380.  doi: 10.1016/j.jfa.2019.01.005.  Google Scholar

[30]

Alessandra Lunardi, Interpolation Theory, Edizioni della Normale, Pisa, 2018. doi: 10.1007/978-88-7642-638-4.  Google Scholar

[31]

Vladimir Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Heidelberg, augmented edition, 2011. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[32]

V. Maz'yaM. Mitrea and T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, J. Anal. Math, 110 (2010), 167-239.  doi: 10.1007/s11854-010-0005-4.  Google Scholar

[33]

Jindřich Nečas, Direct Methods in the Theory of Elliptic Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-10455-8.  Google Scholar

[34]

Huy Q. Nguyen. On well-posedness of the Muskat problem with surface tension, arXiv:1907.11552. Google Scholar

[35]

Huy Q. Nguyen and Benoît Pausader. A paradifferential approach for well-posedness of the muskat problem, Arch. Ration. Mech. Anal., 237 (2020) 25–100. doi: 10.1007/s00205-020-01494-7.  Google Scholar

[36]

J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de Matemática, No. 39. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.  Google Scholar

[37]

Jaak Peetre, New thoughts on Besov Spaces, Mathematics Department, Duke University, Durham, N. C. 1976.  Google Scholar

[38]

Augusto C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differ. Equ, 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.  Google Scholar

[39]

Augusto C. Ponce and Daniel Spector, On formulae decoupling the total variation of BV functions, Nonlinear Anal, 154 (2017), 241-257.  doi: 10.1016/j.na.2016.08.028.  Google Scholar

[40] Elias M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.   Google Scholar
[41]

Robert S. Strichartz, "Graph paper" trace characterizations of functions of finite energy, J. Anal. Math, 128 (2016), 239-260.  doi: 10.1007/s11854-016-0008-x.  Google Scholar

[42]

Gudrun Thater, Neumann problem in domains with outlets of bounded diameter, Acta Appl. Math, 73 (2002), 251-274.  doi: 10.1023/A:1019736224759.  Google Scholar

[43]

Angus Ellis Taylor and David C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, second edition, 1980.  Google Scholar

[44]

Hans Triebel, Interpolation Theory, Function Spaces, Differential Operators, volume 18 of North-Holland Mathematical Library, North-Holland Publishing Co. Amsterdam-New York, 1978.  Google Scholar

[45]

Hans Triebel, Theory of Function Spaces, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2010.  Google Scholar

[46]

Kosaku Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[47]

Kun Zhou and Qiang Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal, 48 (2010), 1759-1780.  doi: 10.1137/090781267.  Google Scholar

show all references

References:
[1] R. A. Adams and John J. F. Fournier, Sobolev Spaces, volume 140 of Pure and Applied Mathematics, Elsevier/Academic Press, Amsterdam, second edition, 2003.   Google Scholar
[2]

Sergey V. AstashkinKonstantin V. Lykov and Mario Milman, Limiting interpolation spaces via extrapolation, J. Approx. Theory, 240 (2019), 16-70.  doi: 10.1016/j.jat.2018.09.007.  Google Scholar

[3]

Jean Bourgain, H. Brezis and Petru Mironescu. Another look at Sobolev spaces. Optimal control and partial differential equations, pages 439–455. IOS, Amsterdam, 2001.  Google Scholar

[4]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s, p}$ when $s\uparrow1$ and applications, J. Anal. Math, 87 (2002), 77-101.  doi: 10.1007/BF02868470.  Google Scholar

[5]

Hajer Bahouri, Jean-Yves Chemin and Raphaël Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[6]

V. Benci and D. Fortunato, Weighted Sobolev spaces and the nonlinear Dirichlet problem in unbounded domains, Ann. Mat. Pura Appl, 121 (1979), 319-336.  doi: 10.1007/BF02412010.  Google Scholar

[7]

Oleg V. Besov, Valentin P. Il'in and Sergey M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, V. H. Winston & Sons, Washington, D. C., Halsted Press, New York-Toronto, Ont. London, 1978.  Google Scholar

[8]

Oleg V. Besov, Valentin P. Il'in and Sergey M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems. Vol. Ⅱ. V. H. Winston & Sons, Washington, D. C.; Halsted Press [John Wiley & Sons], New York-Toronto, Ont. London, 1979.  Google Scholar

[9]

Jöran Bergh and Jörgen Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[10]

H. Brezis and Hoai-Minh Nguyen. Non-local functionals related to the total variation and connections with image processing, Ann. PDE, 4(1): Art. 9, 77, 2018. doi: 10.1007/s40818-018-0044-1.  Google Scholar

[11]

Melvyn S. Berger and Martin Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, Trans. Am. Math. Soc, 172 (1972), 261-278.  doi: 10.2307/1996347.  Google Scholar

[12]

Victor I. Burenkov, Sobolev Spaces on Domains, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998. doi: 10.1007/978-3-663-11374-4.  Google Scholar

[13]

Fernando CobosLuz M. Fernández-CabreraThomas Kühn and Tinono Ullrich, On an extreme class of real interpolation spaces, J. Funct. Anal, 256 (2009), 2321-2366.  doi: 10.1016/j.jfa.2008.12.013.  Google Scholar

[14]

Qiang DuMax GunzburgerR. B. Lehoucq and Kun Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev, 54 (2012), 667-696.  doi: 10.1137/110833294.  Google Scholar

[15]

Eleonora DiNezzaGiampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

D. E. Edmunds and W. D. Evans, Elliptic and degenerate-elliptic operators in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci, 27 (1973), 591-640.   Google Scholar

[17]

Matthieu FelsingerMoritz Kassmann and Paul Voigt, The Dirichlet problem for nonlocal operators, Math. Z, 279 (2015), 779-809.  doi: 10.1007/s00209-014-1394-3.  Google Scholar

[18]

Patrick T. Flynn and Huy Q. Nguyen. The vanishing surface tension limit of the Muskat problem, arXiv: 2001.10473. Google Scholar

[19]

M. E. Gomez and M. Milman. Extrapolation spaces and almost-everywhere convergence of singular integrals, J. London Math. Soc. (2), 34(2): 305–316, 1986. doi: 10.1112/jlms/s2-34.2.305.  Google Scholar

[20]

Loukas Grafakos, Classical Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[21]

Loukas Grafakos, Modern Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1230-8.  Google Scholar

[22]

Pierre Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611972030.ch1.  Google Scholar

[23]

Jan Gustavsson, Interpolation of semi-norms, Technical report, Lund University, 1970. Google Scholar

[24]

Piotr Hajł asz and Agnieszka Kał amajska, Polynomial asymptotics and approximation of Sobolev functions, Studia Math, 113 (1995), 55-64.   Google Scholar

[25]

R. Hanks, Interpolation by the real method between BMO, $L^{\alpha }(0<\alpha <\infty)$ and $H^{\alpha }(0<\alpha <\infty)$, Indiana Univ. Math. J, 26 (1977), 679-689.  doi: 10.1512/iumj.1977.26.26054.  Google Scholar

[26]

Björn Jawerth and Mario Milman. Extrapolation theory with applications, Mem. Am. Math. Soc., 89 (1991), ⅳ+82pp. doi: 10.1090/memo/0440.  Google Scholar

[27]

Alois Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication. John Wiley & Sons, Inc. New York, 1985.  Google Scholar

[28]

Giovanni Leoni, A first course in Sobolev spaces, American Mathematical Society, Providence, RI, second edition, 2017.  Google Scholar

[29]

Giovanni Leoni and Ian Tice, Traces for homogeneous sobolev spaces in infinite strip-like domains, J. Funct. Anal, 277 (2019), 2288-2380.  doi: 10.1016/j.jfa.2019.01.005.  Google Scholar

[30]

Alessandra Lunardi, Interpolation Theory, Edizioni della Normale, Pisa, 2018. doi: 10.1007/978-88-7642-638-4.  Google Scholar

[31]

Vladimir Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Heidelberg, augmented edition, 2011. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[32]

V. Maz'yaM. Mitrea and T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, J. Anal. Math, 110 (2010), 167-239.  doi: 10.1007/s11854-010-0005-4.  Google Scholar

[33]

Jindřich Nečas, Direct Methods in the Theory of Elliptic Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-10455-8.  Google Scholar

[34]

Huy Q. Nguyen. On well-posedness of the Muskat problem with surface tension, arXiv:1907.11552. Google Scholar

[35]

Huy Q. Nguyen and Benoît Pausader. A paradifferential approach for well-posedness of the muskat problem, Arch. Ration. Mech. Anal., 237 (2020) 25–100. doi: 10.1007/s00205-020-01494-7.  Google Scholar

[36]

J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de Matemática, No. 39. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.  Google Scholar

[37]

Jaak Peetre, New thoughts on Besov Spaces, Mathematics Department, Duke University, Durham, N. C. 1976.  Google Scholar

[38]

Augusto C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differ. Equ, 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.  Google Scholar

[39]

Augusto C. Ponce and Daniel Spector, On formulae decoupling the total variation of BV functions, Nonlinear Anal, 154 (2017), 241-257.  doi: 10.1016/j.na.2016.08.028.  Google Scholar

[40] Elias M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.   Google Scholar
[41]

Robert S. Strichartz, "Graph paper" trace characterizations of functions of finite energy, J. Anal. Math, 128 (2016), 239-260.  doi: 10.1007/s11854-016-0008-x.  Google Scholar

[42]

Gudrun Thater, Neumann problem in domains with outlets of bounded diameter, Acta Appl. Math, 73 (2002), 251-274.  doi: 10.1023/A:1019736224759.  Google Scholar

[43]

Angus Ellis Taylor and David C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, second edition, 1980.  Google Scholar

[44]

Hans Triebel, Interpolation Theory, Function Spaces, Differential Operators, volume 18 of North-Holland Mathematical Library, North-Holland Publishing Co. Amsterdam-New York, 1978.  Google Scholar

[45]

Hans Triebel, Theory of Function Spaces, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2010.  Google Scholar

[46]

Kosaku Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[47]

Kun Zhou and Qiang Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal, 48 (2010), 1759-1780.  doi: 10.1137/090781267.  Google Scholar

[1]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[2]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[3]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[4]

Baoxiang Wang. E-Besov spaces and dissipative equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 883-919. doi: 10.3934/cpaa.2004.3.883

[5]

Hermann Brunner, Jingtang Ma. Abstract cascading multigrid preconditioners in Besov spaces. Communications on Pure & Applied Analysis, 2006, 5 (2) : 349-365. doi: 10.3934/cpaa.2006.5.349

[6]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[7]

Irena Lasiecka, Buddhika Priyasad, Roberto Triggiani. Uniform stabilization of Boussinesq systems in critical $ \mathbf{L}^q $-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4071-4117. doi: 10.3934/dcdsb.2020187

[8]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[9]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[10]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure & Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[11]

Mikil Foss, Joe Geisbauer. Higher differentiability in the context of Besov spaces for a class of nonlocal functionals. Evolution Equations & Control Theory, 2013, 2 (2) : 301-318. doi: 10.3934/eect.2013.2.301

[12]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[13]

Shiping Cao, Shuangping Li, Robert S. Strichartz, Prem Talwai. A trace theorem for Sobolev spaces on the Sierpinski gasket. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3901-3916. doi: 10.3934/cpaa.2020159

[14]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[15]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020255

[16]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[17]

Vy Khoi Le. On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 809-818. doi: 10.3934/dcdss.2012.5.809

[18]

Duchao Liu, Beibei Wang, Peihao Zhao. On the trace regularity results of Musielak-Orlicz-Sobolev spaces in a bounded domain. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1643-1659. doi: 10.3934/cpaa.2016018

[19]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020365

[20]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems & Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

2019 Impact Factor: 1.105

Article outline

[Back to Top]