• Previous Article
    Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth
  • CPAA Home
  • This Issue
  • Next Article
    A truncated real interpolation method and characterizations of screened Sobolev spaces
December  2020, 19(12): 5567-5580. doi: 10.3934/cpaa.2020251

Mathematical analysis of bump to bucket problem

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

2. 

LAMFA UMR 7352 CNRS, Université de Picardie Jules Verne, 80039 Amiens CEDEX 1, France

3. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China

* Corresponding author

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: O. Goubet acknowledges the financial support of both SODDA research project funded by Region Hauts-de-France and FEDER from E.C., and S2R 2018 - Action 4.3 of UPJV. S. Li is supported by the Applied Fundamental Research Program of Sichuan Province (no. 2020YJ0264)

In this article, several systems of equations which model surface water waves generated by a sudden bottom deformation (bump) are studied. Because the effect of such deformation are often approximated by assuming the initial water surface has a deformation (bucket), this procedure is investigated and we prove rigorously that by using the correct bucket, the solutions of the regularized bump problems converge to the solution of the bucket problem.

Citation: Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251
References:
[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.   Google Scholar
[2]

J. L. Bona, M. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. derivation and linear theory., Journal of Nonlinear Science. 12 (2002) 283–318. doi: 10.1007/s00332-002-0466-4.  Google Scholar

[3]

J. BonaM. Chen and J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Part Ⅱ: the nonlinear theory, Nonlinearity, 17 (2004), 925-952.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[4]

M. Chen, Equations for Bi-directional Waves Over an Uneven Bottom, Mathematics and Computers in Simulation., 62 (2003), 3-9.  doi: 10.1016/S0378-4754(02)00193-3.  Google Scholar

[5]

D. Dutykh and F. Dias, Energy of tsunami waves generated by bottom motion, Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, 465 (2009) 725–744. doi: 10.1098/rspa.2008.0332.  Google Scholar

[6]

D. Dutykh and F. Dias, Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting, Mathematics and Computers in Simulation, 80 (2009), 837-848.  doi: 10.1016/j.matcom.2009.08.036.  Google Scholar

[7]

D. Dutykh and F. Dias, Influence of sedimentary layering on tsunami generation, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1268-1275.  doi: 10.1016/j.cma.2009.07.011.  Google Scholar

[8]

D. DutykhF. Dias and Y. Kervella, Linear theory of wave generation by a moving bottom, Comptes Rendus Mathematique, 343 (2006), 499-504.  doi: 10.1016/j.crma.2006.09.016.  Google Scholar

[9]

D. Dutykh and H. Kalisch, Boussinesq modeling of surface waves due to underwater landslides, arXiv: 1112.5083. Google Scholar

[10]

D. DutykhD. MitsotakisL. B. Chubarov and Y. I. Shokin, On the contribution of the horizontal sea-bed displacements into the tsunami generation process, Ocean Model., 56 (2012), 43-56.   Google Scholar

[11]

H. Fujiwara and T. Iguchi, A shallow water approximation for water waves over a moving bottom. Nonlinear dynamics in partial differential equations, Adv. Stud. Pure Math., 64, Math. Soc. Japan, Tokyo, 2015, 77–88. doi: 10.2969/aspm/06410077.  Google Scholar

[12]

T. Iguchi, A mathematical analysis of tsunami generation in shallow water due to seabed deformation, P. Roy. Soc. Edinb. A, 141 (2011), 551-608.  doi: 10.1017/S0308210509001279.  Google Scholar

[13]

T. Jamin, L. Gordillo, G. Ruiz-Chavarría, M. Berhanu and E. Falcon, Generation of surface waves by an underwater moving bottom: Experiments and application to tsunami modelling, arXiv: 1404.0312. Google Scholar

[14]

D. Lannes, The water waves problem: mathematical analysis and asymptotics, Am. Math. Soc., 188 (2013) doi: 10.1090/surv/188.  Google Scholar

[15]

S. J. Lee, Generation Of Long Water Waves By Moving Disturbances., PhD thesis, California Institute of Technology, 1985. Google Scholar

[16]

D. Mitsotakis, Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves, Math. Comput. Simulat., 80 (2009), 860-873.  doi: 10.1016/j.matcom.2009.08.029.  Google Scholar

[17]

H. NersisyanD. Dutykh and E. Zuazua, Generation of two-dimensional water waves by moving bottom disturbances, IMA J. Appl. Math., 80 (2015), 1235-1253.  doi: 10.1093/imamat/hxu051.  Google Scholar

[18]

L. Nirenberg, A strong maximum principle for parabolic equations, Commun. Pure Appl. Math., 6 (1953), 167-177.  doi: 10.1002/cpa.3160060202.  Google Scholar

[19]

G. Sadaka, Propagation of a tsunami wave., arXiv: 1210.4260. Google Scholar

[20]

T. Saito, Dynamic tsunami generation due to sea-bottom deformation: Analytical representation based on linear potential theory, Earth Planets Space, 65 (2013), 1411-1423.   Google Scholar

[21]

M. Schonbek, Existence of solutions for the Boussinesq system of equations, J. Differ. Equ., 42 (1981), 325-352.  doi: 10.1016/0022-0396(81)90108-X.  Google Scholar

[22]

S. Y. Sekerzh-Zenkovich, Analytical study of a potential model of tsunami with a simple source of piston type. 1. exact solution. creation of tsunami, Russ. J. Math. Phys., 19 (2012), 385-393.  doi: 10.1134/S1061920812030107.  Google Scholar

[23]

S. Y. Sekerzh-Zenkovich, Analytic study of a potential model of tsunami with a simple source of piston type. 2. asymptotic formula for the height of tsunami in the far field, Russ. J Math. Phys., 20 (2013), 542-546.  doi: 10.1134/S1061920813040134.  Google Scholar

[24]

S. Y. Sekerzh-Zenkovich, Analytical study of the tsunami potential model with a simple piston-like source. 3. application of the model in the inverse problem related to the japanese tsunami 2011, Russ. J. Math. Phys., 21 (2014), 504-508.  doi: 10.1134/S1061920814040086.  Google Scholar

[25]

M. Tulin, C. Yih, D. Wu, T. Wu and V. Shanmuganathan, Three-dimensional nonlinear long waves due to moving surface pressure. Proceedings of 14th Symposium on Naval Hydrodynamics, National Academy Press, Washington, DC, 1982. Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.   Google Scholar
[2]

J. L. Bona, M. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. derivation and linear theory., Journal of Nonlinear Science. 12 (2002) 283–318. doi: 10.1007/s00332-002-0466-4.  Google Scholar

[3]

J. BonaM. Chen and J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Part Ⅱ: the nonlinear theory, Nonlinearity, 17 (2004), 925-952.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[4]

M. Chen, Equations for Bi-directional Waves Over an Uneven Bottom, Mathematics and Computers in Simulation., 62 (2003), 3-9.  doi: 10.1016/S0378-4754(02)00193-3.  Google Scholar

[5]

D. Dutykh and F. Dias, Energy of tsunami waves generated by bottom motion, Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, 465 (2009) 725–744. doi: 10.1098/rspa.2008.0332.  Google Scholar

[6]

D. Dutykh and F. Dias, Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting, Mathematics and Computers in Simulation, 80 (2009), 837-848.  doi: 10.1016/j.matcom.2009.08.036.  Google Scholar

[7]

D. Dutykh and F. Dias, Influence of sedimentary layering on tsunami generation, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1268-1275.  doi: 10.1016/j.cma.2009.07.011.  Google Scholar

[8]

D. DutykhF. Dias and Y. Kervella, Linear theory of wave generation by a moving bottom, Comptes Rendus Mathematique, 343 (2006), 499-504.  doi: 10.1016/j.crma.2006.09.016.  Google Scholar

[9]

D. Dutykh and H. Kalisch, Boussinesq modeling of surface waves due to underwater landslides, arXiv: 1112.5083. Google Scholar

[10]

D. DutykhD. MitsotakisL. B. Chubarov and Y. I. Shokin, On the contribution of the horizontal sea-bed displacements into the tsunami generation process, Ocean Model., 56 (2012), 43-56.   Google Scholar

[11]

H. Fujiwara and T. Iguchi, A shallow water approximation for water waves over a moving bottom. Nonlinear dynamics in partial differential equations, Adv. Stud. Pure Math., 64, Math. Soc. Japan, Tokyo, 2015, 77–88. doi: 10.2969/aspm/06410077.  Google Scholar

[12]

T. Iguchi, A mathematical analysis of tsunami generation in shallow water due to seabed deformation, P. Roy. Soc. Edinb. A, 141 (2011), 551-608.  doi: 10.1017/S0308210509001279.  Google Scholar

[13]

T. Jamin, L. Gordillo, G. Ruiz-Chavarría, M. Berhanu and E. Falcon, Generation of surface waves by an underwater moving bottom: Experiments and application to tsunami modelling, arXiv: 1404.0312. Google Scholar

[14]

D. Lannes, The water waves problem: mathematical analysis and asymptotics, Am. Math. Soc., 188 (2013) doi: 10.1090/surv/188.  Google Scholar

[15]

S. J. Lee, Generation Of Long Water Waves By Moving Disturbances., PhD thesis, California Institute of Technology, 1985. Google Scholar

[16]

D. Mitsotakis, Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves, Math. Comput. Simulat., 80 (2009), 860-873.  doi: 10.1016/j.matcom.2009.08.029.  Google Scholar

[17]

H. NersisyanD. Dutykh and E. Zuazua, Generation of two-dimensional water waves by moving bottom disturbances, IMA J. Appl. Math., 80 (2015), 1235-1253.  doi: 10.1093/imamat/hxu051.  Google Scholar

[18]

L. Nirenberg, A strong maximum principle for parabolic equations, Commun. Pure Appl. Math., 6 (1953), 167-177.  doi: 10.1002/cpa.3160060202.  Google Scholar

[19]

G. Sadaka, Propagation of a tsunami wave., arXiv: 1210.4260. Google Scholar

[20]

T. Saito, Dynamic tsunami generation due to sea-bottom deformation: Analytical representation based on linear potential theory, Earth Planets Space, 65 (2013), 1411-1423.   Google Scholar

[21]

M. Schonbek, Existence of solutions for the Boussinesq system of equations, J. Differ. Equ., 42 (1981), 325-352.  doi: 10.1016/0022-0396(81)90108-X.  Google Scholar

[22]

S. Y. Sekerzh-Zenkovich, Analytical study of a potential model of tsunami with a simple source of piston type. 1. exact solution. creation of tsunami, Russ. J. Math. Phys., 19 (2012), 385-393.  doi: 10.1134/S1061920812030107.  Google Scholar

[23]

S. Y. Sekerzh-Zenkovich, Analytic study of a potential model of tsunami with a simple source of piston type. 2. asymptotic formula for the height of tsunami in the far field, Russ. J Math. Phys., 20 (2013), 542-546.  doi: 10.1134/S1061920813040134.  Google Scholar

[24]

S. Y. Sekerzh-Zenkovich, Analytical study of the tsunami potential model with a simple piston-like source. 3. application of the model in the inverse problem related to the japanese tsunami 2011, Russ. J. Math. Phys., 21 (2014), 504-508.  doi: 10.1134/S1061920814040086.  Google Scholar

[25]

M. Tulin, C. Yih, D. Wu, T. Wu and V. Shanmuganathan, Three-dimensional nonlinear long waves due to moving surface pressure. Proceedings of 14th Symposium on Naval Hydrodynamics, National Academy Press, Washington, DC, 1982. Google Scholar

[1]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[2]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[5]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[6]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[7]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[11]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[12]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[13]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[14]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[15]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[16]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[17]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[18]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[19]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[20]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (54)
  • HTML views (63)
  • Cited by (0)

Other articles
by authors

[Back to Top]