doi: 10.3934/cpaa.2020251

Mathematical analysis of bump to bucket problem

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

2. 

LAMFA UMR 7352 CNRS, Université de Picardie Jules Verne, 80039 Amiens CEDEX 1, France

3. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China

* Corresponding author

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: O. Goubet acknowledges the financial support of both SODDA research project funded by Region Hauts-de-France and FEDER from E.C., and S2R 2018 - Action 4.3 of UPJV. S. Li is supported by the Applied Fundamental Research Program of Sichuan Province (no. 2020YJ0264)

In this article, several systems of equations which model surface water waves generated by a sudden bottom deformation (bump) are studied. Because the effect of such deformation are often approximated by assuming the initial water surface has a deformation (bucket), this procedure is investigated and we prove rigorously that by using the correct bucket, the solutions of the regularized bump problems converge to the solution of the bucket problem.

Citation: Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020251
References:
[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.   Google Scholar
[2]

J. L. Bona, M. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. derivation and linear theory., Journal of Nonlinear Science. 12 (2002) 283–318. doi: 10.1007/s00332-002-0466-4.  Google Scholar

[3]

J. BonaM. Chen and J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Part II: the nonlinear theory, Nonlinearity, 17 (2004), 925-952.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[4]

M. Chen, Equations for Bi-directional Waves Over an Uneven Bottom, Mathematics and Computers in Simulation., 62 (2003), 3-9.  doi: 10.1016/S0378-4754(02)00193-3.  Google Scholar

[5]

D. Dutykh and F. Dias, Energy of tsunami waves generated by bottom motion, Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, 465 (2009) 725–744. doi: 10.1098/rspa.2008.0332.  Google Scholar

[6]

D. Dutykh and F. Dias, Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting, Mathematics and Computers in Simulation, 80 (2009), 837-848.  doi: 10.1016/j.matcom.2009.08.036.  Google Scholar

[7]

D. Dutykh and F. Dias, Influence of sedimentary layering on tsunami generation, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1268-1275.  doi: 10.1016/j.cma.2009.07.011.  Google Scholar

[8]

D. DutykhF. Dias and Y. Kervella, Linear theory of wave generation by a moving bottom., Comptes Rendus Mathematique, 343 (2006), 499-504.  doi: 10.1016/j.crma.2006.09.016.  Google Scholar

[9]

D. Dutykh and H. Kalisch, Boussinesq modeling of surface waves due to underwater landslides, arXiv: 1112.5083. Google Scholar

[10]

D. DutykhD. MitsotakisL. B. Chubarov and Y. I. Shokin, On the contribution of the horizontal sea-bed displacements into the tsunami generation process, Ocean Model., 56 (2012), 43-56.   Google Scholar

[11]

H. Fujiwara and T. Iguchi, A shallow water approximation for water waves over a moving bottom. Nonlinear dynamics in partial differential equations, Adv. Stud. Pure Math., 64, Math. Soc. Japan, Tokyo, 2015, 77–88. doi: 10.2969/aspm/06410077.  Google Scholar

[12]

T. Iguchi, A mathematical analysis of tsunami generation in shallow water due to seabed deformation, P. Roy. Soc. Edinb. A, 141 (2011), 551-608.  doi: 10.1017/S0308210509001279.  Google Scholar

[13]

T. Jamin, L. Gordillo, G. Ruiz-Chavarría, M. Berhanu and E. Falcon, Generation of surface waves by an underwater moving bottom: Experiments and application to tsunami modelling, arXiv: 1404.0312. Google Scholar

[14]

D. Lannes, The water waves problem: mathematical analysis and asymptotics, Am. Math. Soc., 188 (2013) doi: 10.1090/surv/188.  Google Scholar

[15]

S. J. Lee, Generation Of Long Water Waves By Moving Disturbances., PhD thesis, California Institute of Technology, 1985. Google Scholar

[16]

D. Mitsotakis, Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves., Math. Comput. Simulat., 80 (2009), 860-873.  doi: 10.1016/j.matcom.2009.08.029.  Google Scholar

[17]

H. NersisyanD. Dutykh and E. Zuazua, Generation of two-dimensional water waves by moving bottom disturbances., IMA J. Appl. Math., 80 (2015), 1235-1253.  doi: 10.1093/imamat/hxu051.  Google Scholar

[18]

L. Nirenberg, A strong maximum principle for parabolic equations., Commun. Pure Appl. Math., 6 (1953), 167-177.  doi: 10.1002/cpa.3160060202.  Google Scholar

[19]

G. Sadaka, Propagation of a tsunami wave., arXiv: 1210.4260. Google Scholar

[20]

T. Saito, Dynamic tsunami generation due to sea-bottom deformation: Analytical representation based on linear potential theory, Earth Planets Space, 65 (2013), 1411-1423.   Google Scholar

[21]

M. Schonbek, Existence of solutions for the Boussinesq system of equations, J. Differ. Equ., 42 (1981), 325-352.  doi: 10.1016/0022-0396(81)90108-X.  Google Scholar

[22]

S. Y. Sekerzh-Zenkovich, Analytical study of a potential model of tsunami with a simple source of piston type. 1. exact solution. creation of tsunami., Russ. J. Math. Phys., 19 (2012), 385-393.  doi: 10.1134/S1061920812030107.  Google Scholar

[23]

S. Y. Sekerzh-Zenkovich, Analytic study of a potential model of tsunami with a simple source of piston type. 2. asymptotic formula for the height of tsunami in the far field., Russ. J Math. Phys., 20 (2013), 542-546.  doi: 10.1134/S1061920813040134.  Google Scholar

[24]

S. Y. Sekerzh-Zenkovich, Analytical study of the tsunami potential model with a simple piston-like source. 3. application of the model in the inverse problem related to the japanese tsunami 2011., Russ. J. Math. Phys., 21 (2014), 504-508.  doi: 10.1134/S1061920814040086.  Google Scholar

[25]

M. Tulin, C. Yih, D. Wu, T. Wu and V. Shanmuganathan, Three-dimensional nonlinear long waves due to moving surface pressure. Proceedings of 14th Symposium on Naval Hydrodynamics, National Academy Press, Washington, DC, 1982. doi: http://dx.doi.org/.  Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.   Google Scholar
[2]

J. L. Bona, M. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. derivation and linear theory., Journal of Nonlinear Science. 12 (2002) 283–318. doi: 10.1007/s00332-002-0466-4.  Google Scholar

[3]

J. BonaM. Chen and J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Part II: the nonlinear theory, Nonlinearity, 17 (2004), 925-952.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[4]

M. Chen, Equations for Bi-directional Waves Over an Uneven Bottom, Mathematics and Computers in Simulation., 62 (2003), 3-9.  doi: 10.1016/S0378-4754(02)00193-3.  Google Scholar

[5]

D. Dutykh and F. Dias, Energy of tsunami waves generated by bottom motion, Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, 465 (2009) 725–744. doi: 10.1098/rspa.2008.0332.  Google Scholar

[6]

D. Dutykh and F. Dias, Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting, Mathematics and Computers in Simulation, 80 (2009), 837-848.  doi: 10.1016/j.matcom.2009.08.036.  Google Scholar

[7]

D. Dutykh and F. Dias, Influence of sedimentary layering on tsunami generation, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1268-1275.  doi: 10.1016/j.cma.2009.07.011.  Google Scholar

[8]

D. DutykhF. Dias and Y. Kervella, Linear theory of wave generation by a moving bottom., Comptes Rendus Mathematique, 343 (2006), 499-504.  doi: 10.1016/j.crma.2006.09.016.  Google Scholar

[9]

D. Dutykh and H. Kalisch, Boussinesq modeling of surface waves due to underwater landslides, arXiv: 1112.5083. Google Scholar

[10]

D. DutykhD. MitsotakisL. B. Chubarov and Y. I. Shokin, On the contribution of the horizontal sea-bed displacements into the tsunami generation process, Ocean Model., 56 (2012), 43-56.   Google Scholar

[11]

H. Fujiwara and T. Iguchi, A shallow water approximation for water waves over a moving bottom. Nonlinear dynamics in partial differential equations, Adv. Stud. Pure Math., 64, Math. Soc. Japan, Tokyo, 2015, 77–88. doi: 10.2969/aspm/06410077.  Google Scholar

[12]

T. Iguchi, A mathematical analysis of tsunami generation in shallow water due to seabed deformation, P. Roy. Soc. Edinb. A, 141 (2011), 551-608.  doi: 10.1017/S0308210509001279.  Google Scholar

[13]

T. Jamin, L. Gordillo, G. Ruiz-Chavarría, M. Berhanu and E. Falcon, Generation of surface waves by an underwater moving bottom: Experiments and application to tsunami modelling, arXiv: 1404.0312. Google Scholar

[14]

D. Lannes, The water waves problem: mathematical analysis and asymptotics, Am. Math. Soc., 188 (2013) doi: 10.1090/surv/188.  Google Scholar

[15]

S. J. Lee, Generation Of Long Water Waves By Moving Disturbances., PhD thesis, California Institute of Technology, 1985. Google Scholar

[16]

D. Mitsotakis, Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves., Math. Comput. Simulat., 80 (2009), 860-873.  doi: 10.1016/j.matcom.2009.08.029.  Google Scholar

[17]

H. NersisyanD. Dutykh and E. Zuazua, Generation of two-dimensional water waves by moving bottom disturbances., IMA J. Appl. Math., 80 (2015), 1235-1253.  doi: 10.1093/imamat/hxu051.  Google Scholar

[18]

L. Nirenberg, A strong maximum principle for parabolic equations., Commun. Pure Appl. Math., 6 (1953), 167-177.  doi: 10.1002/cpa.3160060202.  Google Scholar

[19]

G. Sadaka, Propagation of a tsunami wave., arXiv: 1210.4260. Google Scholar

[20]

T. Saito, Dynamic tsunami generation due to sea-bottom deformation: Analytical representation based on linear potential theory, Earth Planets Space, 65 (2013), 1411-1423.   Google Scholar

[21]

M. Schonbek, Existence of solutions for the Boussinesq system of equations, J. Differ. Equ., 42 (1981), 325-352.  doi: 10.1016/0022-0396(81)90108-X.  Google Scholar

[22]

S. Y. Sekerzh-Zenkovich, Analytical study of a potential model of tsunami with a simple source of piston type. 1. exact solution. creation of tsunami., Russ. J. Math. Phys., 19 (2012), 385-393.  doi: 10.1134/S1061920812030107.  Google Scholar

[23]

S. Y. Sekerzh-Zenkovich, Analytic study of a potential model of tsunami with a simple source of piston type. 2. asymptotic formula for the height of tsunami in the far field., Russ. J Math. Phys., 20 (2013), 542-546.  doi: 10.1134/S1061920813040134.  Google Scholar

[24]

S. Y. Sekerzh-Zenkovich, Analytical study of the tsunami potential model with a simple piston-like source. 3. application of the model in the inverse problem related to the japanese tsunami 2011., Russ. J. Math. Phys., 21 (2014), 504-508.  doi: 10.1134/S1061920814040086.  Google Scholar

[25]

M. Tulin, C. Yih, D. Wu, T. Wu and V. Shanmuganathan, Three-dimensional nonlinear long waves due to moving surface pressure. Proceedings of 14th Symposium on Naval Hydrodynamics, National Academy Press, Washington, DC, 1982. doi: http://dx.doi.org/.  Google Scholar

[1]

Arnab Roy, Takéo Takahashi. Local null controllability of a rigid body moving into a Boussinesq flow. Mathematical Control & Related Fields, 2019, 9 (4) : 793-836. doi: 10.3934/mcrf.2019050

[2]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[3]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[4]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138

[5]

Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385

[6]

Salvador Addas-Zanata, Fábio A. Tal. Homeomorphisms of the annulus with a transitive lift II. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 651-668. doi: 10.3934/dcds.2011.31.651

[7]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[8]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

[9]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[10]

Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117

[11]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[12]

Enrique Fernández-Cara, Diego A. Souza. On the control of some coupled systems of the Boussinesq kind with few controls. Mathematical Control & Related Fields, 2012, 2 (2) : 121-140. doi: 10.3934/mcrf.2012.2.121

[13]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[14]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[15]

Luigi C. Berselli, Carlo R. Grisanti. On the regularity up to the boundary for certain nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 53-71. doi: 10.3934/dcdss.2016.9.53

[16]

Shuang Liu, Xinfeng Liu. Krylov implicit integration factor method for a class of stiff reaction-diffusion systems with moving boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 141-159. doi: 10.3934/dcdsb.2019176

[17]

Monica Conti, Filippo Dell'Oro, Vittorino Pata. Nonclassical diffusion with memory lacking instantaneous damping. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2035-2050. doi: 10.3934/cpaa.2020090

[18]

Liang Bai, Juan J. Nieto, José M. Uzal. On a delayed epidemic model with non-instantaneous impulses. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1915-1930. doi: 10.3934/cpaa.2020084

[19]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of two-dimensional dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 37-53. doi: 10.3934/dcdss.2009.2.37

[20]

Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (21)
  • HTML views (32)
  • Cited by (0)

Other articles
by authors

[Back to Top]