-
Previous Article
On competition models under allee effect: Asymptotic behavior and traveling waves
- CPAA Home
- This Issue
-
Next Article
Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth
Solutions of nonlocal problem with critical exponent
School of Mathematics and computer science, Wuhan Polytechnic University, Wuhan 430023, China |
$ \begin{equation*} \begin{cases} (-\Delta)^\alpha u+\lambda_1u = |u|^{2_\alpha^*-2}u+\beta v , \quad x\in \Omega , \\ (-\Delta)^\alpha v+\lambda_2v = |v|^{2_\alpha^*-2}v+\beta u , \,\quad x\in \Omega , \\ u = v = 0,\ \ \qquad \qquad \qquad \quad \quad \qquad \,x\in \partial\Omega. \end{cases} \end{equation*} $ |
$ \Omega $ |
$ {\mathbb{R}}^N(N>4\alpha) $ |
$ 0<\alpha<1 $ |
$ \lambda_1,\lambda_2>-\lambda_1(\Omega) $ |
$ \lambda_1(\Omega) $ |
$ 2_\alpha^* = \frac{2N}{N-2\alpha} $ |
$ \beta\in {\mathbb{R}} $ |
$ \beta>0 $ |
$ |\beta| $ |
$ \beta\rightarrow 0 $ |
References:
[1] |
A. Ambrosetti and E. Colorado,
Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc., 75 (2007), 67-82.
doi: 10.1112/jlms/jdl020. |
[2] |
A. Ambrosetti, E. Colorado and D. Ruiz,
Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 30 (2007), 85-112.
doi: 10.1007/s00526-006-0079-0. |
[3] |
D. Applebaum,
Levy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
|
[4] |
T. Bartsch, N. Dancer and Z.Q. Wang,
A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[5] |
C. Br$\ddot{a}$ndle, E. Colorado, A. de Pablo and U. Sanches,
A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect A, 143 (2013), 39-71.
doi: 10.1017/S0308210511000175. |
[6] |
H. Brezis and E. Lieb,
A relation between pointwise convergence of functions and convergence of functions, Proc. Am. Math. Soc., 88 (1983), 486-490.
doi: 10.1007/978-3-642-55925-9_42. |
[7] |
X. Cabre and J. Tan,
Positive solutions of nonlinear problems involving the square root of Laplacian, Adv. Math., 224 (2010), 2052-2093.
doi: 10.1016/j.aim.2010.01.025. |
[8] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Commun. Pure Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[9] |
X. Chang and Z.Q. Wang,
Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differ. Equ., 256 (2014), 2965-2992.
doi: 10.1016/j.jde.2014.01.027. |
[10] |
Z. Chen and W. Zou,
On linearly coupled Schrödinger systems, Proc. Am. Math. Soc., 142 (2014), 323-333.
doi: 10.1090/S0002-9939-2013-12000-9. |
[11] |
J. D$\acute{a}$vila, M. De Pino and J. Wei,
Concentrating standing waves for the fractional nonlinear Schr$\ddot{o}$dinger equation, J. Differ. Equ., 256 (2014), 858-892.
doi: 10.1016/j.jde.2013.10.006. |
[12] |
A. Garroni and S. M$\ddot{u}$ller,
$\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964.
doi: 10.1137/s003614100343768x. |
[13] |
Q. Guo and X. He,
Least energy solutions for a weakly coupled fractional Schrödinger system, Nonlinear Anal., 132 (2016), 141-159.
doi: 10.1016/j.na.2015.11.005. |
[14] |
X. He, M. Squassina and W. Zou,
The Nehari manifold for fractional systems involving critical nonlinearities, Commun. Pure Appl. Anal., 15 (2016), 1285-1308.
doi: 10.3934/cpaa.2016.15.1285. |
[15] |
C. Lin and S. Peng,
Segregated vector solutions for linearly coupled nonlinear Schrödinger systems, Indiana Univ. Math. J., 63 (2014), 939-967.
doi: 10.1512/iumj.2014.63.5310. |
[16] |
W. Long and S. Peng, Positive vector solutions for a schrödinger system with external source terms, Nonlinear Differ. Equ. Appl., 27 (2020), 36pp.
doi: 10.1007/s00030-019-0608-0. |
[17] |
W. Long and S. Peng,
Segregated vector solutions for a class of Bose-Einstein systems, J. Differ. Equ., 257 (2014), 207-230.
doi: 10.1016/j.jde.2014.03.019. |
[18] |
W. Long, Z. Tang and S. Yan, Many synchronized vector solutions for a Bose-Einstein system, preprint. |
[19] |
D. Lv and S. Peng,
On the positive vector solutions for nonlinear fractional systems with linear coupling, Discrete contin. dyn. syst. Ser. A, 37 (2017), 3327-3352.
doi: 10.1515/ans-2015-5024. |
[20] |
S Peng, W. Shuai and Q. Wang,
Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent, J. Differ. Equ., 263 (2017), 709-731.
doi: 10.1016/j.jde.2017.02.053. |
[21] |
J. Tan,
The Br$\acute{e}$zis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differ. Equ., 42 (2011), 21-41.
doi: 10.1007/s00526-010-0378-3. |
[22] |
E. Valdinoci, From the long jump random walk to the fractional Laplacian, arXiv: 0901.3261. |
[23] |
S. Yan, J. Yang and X. Yu,
Equations involving fractional Laplacian operator: compactness and application, J. Funct. Anal., 269 (2015), 47-79.
doi: 10.1016/j.jfa.2015.04.012. |
show all references
References:
[1] |
A. Ambrosetti and E. Colorado,
Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc., 75 (2007), 67-82.
doi: 10.1112/jlms/jdl020. |
[2] |
A. Ambrosetti, E. Colorado and D. Ruiz,
Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 30 (2007), 85-112.
doi: 10.1007/s00526-006-0079-0. |
[3] |
D. Applebaum,
Levy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
|
[4] |
T. Bartsch, N. Dancer and Z.Q. Wang,
A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[5] |
C. Br$\ddot{a}$ndle, E. Colorado, A. de Pablo and U. Sanches,
A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect A, 143 (2013), 39-71.
doi: 10.1017/S0308210511000175. |
[6] |
H. Brezis and E. Lieb,
A relation between pointwise convergence of functions and convergence of functions, Proc. Am. Math. Soc., 88 (1983), 486-490.
doi: 10.1007/978-3-642-55925-9_42. |
[7] |
X. Cabre and J. Tan,
Positive solutions of nonlinear problems involving the square root of Laplacian, Adv. Math., 224 (2010), 2052-2093.
doi: 10.1016/j.aim.2010.01.025. |
[8] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Commun. Pure Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[9] |
X. Chang and Z.Q. Wang,
Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differ. Equ., 256 (2014), 2965-2992.
doi: 10.1016/j.jde.2014.01.027. |
[10] |
Z. Chen and W. Zou,
On linearly coupled Schrödinger systems, Proc. Am. Math. Soc., 142 (2014), 323-333.
doi: 10.1090/S0002-9939-2013-12000-9. |
[11] |
J. D$\acute{a}$vila, M. De Pino and J. Wei,
Concentrating standing waves for the fractional nonlinear Schr$\ddot{o}$dinger equation, J. Differ. Equ., 256 (2014), 858-892.
doi: 10.1016/j.jde.2013.10.006. |
[12] |
A. Garroni and S. M$\ddot{u}$ller,
$\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964.
doi: 10.1137/s003614100343768x. |
[13] |
Q. Guo and X. He,
Least energy solutions for a weakly coupled fractional Schrödinger system, Nonlinear Anal., 132 (2016), 141-159.
doi: 10.1016/j.na.2015.11.005. |
[14] |
X. He, M. Squassina and W. Zou,
The Nehari manifold for fractional systems involving critical nonlinearities, Commun. Pure Appl. Anal., 15 (2016), 1285-1308.
doi: 10.3934/cpaa.2016.15.1285. |
[15] |
C. Lin and S. Peng,
Segregated vector solutions for linearly coupled nonlinear Schrödinger systems, Indiana Univ. Math. J., 63 (2014), 939-967.
doi: 10.1512/iumj.2014.63.5310. |
[16] |
W. Long and S. Peng, Positive vector solutions for a schrödinger system with external source terms, Nonlinear Differ. Equ. Appl., 27 (2020), 36pp.
doi: 10.1007/s00030-019-0608-0. |
[17] |
W. Long and S. Peng,
Segregated vector solutions for a class of Bose-Einstein systems, J. Differ. Equ., 257 (2014), 207-230.
doi: 10.1016/j.jde.2014.03.019. |
[18] |
W. Long, Z. Tang and S. Yan, Many synchronized vector solutions for a Bose-Einstein system, preprint. |
[19] |
D. Lv and S. Peng,
On the positive vector solutions for nonlinear fractional systems with linear coupling, Discrete contin. dyn. syst. Ser. A, 37 (2017), 3327-3352.
doi: 10.1515/ans-2015-5024. |
[20] |
S Peng, W. Shuai and Q. Wang,
Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent, J. Differ. Equ., 263 (2017), 709-731.
doi: 10.1016/j.jde.2017.02.053. |
[21] |
J. Tan,
The Br$\acute{e}$zis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differ. Equ., 42 (2011), 21-41.
doi: 10.1007/s00526-010-0378-3. |
[22] |
E. Valdinoci, From the long jump random walk to the fractional Laplacian, arXiv: 0901.3261. |
[23] |
S. Yan, J. Yang and X. Yu,
Equations involving fractional Laplacian operator: compactness and application, J. Funct. Anal., 269 (2015), 47-79.
doi: 10.1016/j.jfa.2015.04.012. |
[1] |
M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705 |
[2] |
Chunyan Zhao, Chengkui Zhong, Zhijun Tang. Asymptotic behavior of the wave equation with nonlocal weak damping, anti-damping and critical nonlinearity. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022025 |
[3] |
Elvise Berchio, Filippo Gazzola. Positive solutions to a linearly perturbed critical growth biharmonic problem. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 809-823. doi: 10.3934/dcdss.2011.4.809 |
[4] |
Juncheng Wei, Ke Wu. Local behavior of solutions to a fractional equation with isolated singularity and critical Serrin exponent. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4031-4050. doi: 10.3934/dcds.2022044 |
[5] |
Peter E. Kloeden, Jacson Simsen, Petra Wittbold. Asymptotic behavior of coupled inclusions with variable exponents. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1001-1016. doi: 10.3934/cpaa.2020046 |
[6] |
Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure and Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921 |
[7] |
Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109 |
[8] |
Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391 |
[9] |
Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355 |
[10] |
Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 |
[11] |
Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure and Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567 |
[12] |
Lingwei Ma, Zhong Bo Fang. A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1697-1706. doi: 10.3934/cpaa.2017081 |
[13] |
Yinnian He, Yi Li. Asymptotic behavior of linearized viscoelastic flow problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 843-856. doi: 10.3934/dcdsb.2008.10.843 |
[14] |
Yan Zhang. Asymptotic behavior of a nonlocal KPP equation with an almost periodic nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5183-5199. doi: 10.3934/dcds.2016025 |
[15] |
Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019 |
[16] |
Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 861-883. doi: 10.3934/dcds.2008.22.861 |
[17] |
Jiaohui Xu, Tomás Caraballo, José Valero. Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021140 |
[18] |
Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123 |
[19] |
Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial and Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87 |
[20] |
Cristian A. Coclici, Jörg Heiermann, Gh. Moroşanu, W. L. Wendland. Asymptotic analysis of a two--dimensional coupled problem for compressible viscous flows. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 137-163. doi: 10.3934/dcds.2004.10.137 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]