July  2020, 19(12): 5609-5626. doi: 10.3934/cpaa.2020256

On competition models under allee effect: Asymptotic behavior and traveling waves

Department of Mathematics and Statistics, University of North Carolina at Wilmington, Wilmington, NC 28403

*Corresponding author

Received  February 2020 Revised  June 2020 Published  October 2020

In this article, we study a reaction-diffusion model on infinite spatial domain for two competing biological species ($ u $ and $ v $). Under one-side Allee effect on $ u $-species, the model demonstrates complexity on its coexistence and $ u $-dominance steady states. The conditions for persistence, permanence and competitive exclusion of the species are obtained through analysis on asymptotic behavior of the solutions and stability of the steady states, including the attraction regions and convergent rates depending on the biological parameters. When the Allee effect constant $ K $ is large relative to other biological parameters, the asymptotic stability of the $ v $-dominance state $ (0,\:1) $ indicates the competitive exclusion of the $ u $-species. Applying upper-lower solution method, we further prove that for a family of wave speeds with specific minimum wave speed determined by several biological parameters (including the magnitude of the $ u $-dominance states), there exist traveling wave solutions flowing from the $ u $-dominance states to the $ v $-dominance state. The asymptotic rates of the traveling waves at $ \xi \rightarrow \mp \infty $ are also explicitly calculated. Finally, numerical simulations are presented to illustrate the theoretical results and population dynamics of coexistence or dominance-shifting.

Citation: Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256
References:
[1]

S. Ahmad and A. Lazer, An elementary approach to traveling front solutions to a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), 893-901.  doi: 10.1016/0362-546X(91)90152-Q.  Google Scholar

[2]

P. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. math. phys., 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.  Google Scholar

[3]

J. Blat and K. J. Brown, Bifurcation of steady-state solutions in predator-prey and competition systems, P. Roy. Soc. Edinb. A, 97 (1984), 21-34.  doi: 10.1017/S0308210500031802.  Google Scholar

[4]

A. Boumenir and V. Nguyen, Perron theorem in the monotone iteration for traveling waves in delayed in delayed reaction diffusion equations, J. Differ. Equ., 244 (2008), 1151-1570.  doi: 10.1016/j.jde.2008.01.004.  Google Scholar

[5]

C. Conley and R. Gardner, An application of the generalized Mores index to traveling wave solutions of a competition reaction diffusion model, Indiana U. Math. J., 44 (1984), 319-343.  doi: 10.1512/iumj.1984.33.33018.  Google Scholar

[6]

S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: a. heteroclinic connection in $R^{4}$, T. Am. Math. Soc., 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[7]

W. Feng, Competitive exclusion and persistence in models of resource and sexual competition, J. Math. Biol., 35 (1997), 683-694.  doi: 10.1007/s002850050071.  Google Scholar

[8]

W. Feng and X. Lu, Harmless delays for permanence in a class of population models with diffusion effects, J. Math. Anal. Appl., 206 (1997), 547-566.  doi: 10.1006/jmaa.1997.5265.  Google Scholar

[9]

W. Feng and X. Lu, Traveling waves and competitive exclusion in models of resource competition and mating interference, J. Math. Anal. Appl., 424 (2015), 542-562.  doi: 10.1016/j.jmaa.2014.11.027.  Google Scholar

[10]

W. FengW. Ruan and X. Lu, On existence of wavefront solutions in mixed monotone reaction-diffusion systems, Discrete Cont. Dyn. B, 21 (2016), 815-836.  doi: 10.3934/dcdsb.2016.21.815.  Google Scholar

[11]

R. Gardner, Existence and stability of traveling wave solutions of competition models: a degree theoretic approach, J. Differ. Equ., 44 (1982), 343-364.  doi: 10.1016/0022-0396(82)90001-8.  Google Scholar

[12]

X. Hou and W. Feng, Traveling waves and their stability in a coupled reaction diffusion system, Commun. Pure Appl. Anal., 10 (2011), 141-160.  doi: 10.3934/cpaa.2011.10.141.  Google Scholar

[13]

J. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Voltera system with delays, J. Math. Anal. Appl, 271 (2002), 455-466.  doi: 10.1016/S0022-247X(02)00135-X.  Google Scholar

[14]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis, Theory, Method and Application, 27 (1996), 579-587.  doi: 10.1016/0362-546X(95)00221-G.  Google Scholar

[15]

Y. Kan-on, Parameter dependence of propagation speed of traveling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.  doi: 10.1137/S0036141093244556.  Google Scholar

[16]

A. Leung, Nonlinear Systems of Partial Differential Equations: Applications to Life and Physical Sciences, World Scientific, Singapore, 2009. doi: 10.1142/9789814277709.  Google Scholar

[17]

A. W. LeungX. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited, Discrete Cont. Dyn. B, 15 (2011), 171-196.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[18]

Mark A. LewisBi ngtuan Li and Hans F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233.  doi: 10.1007/s002850200144.  Google Scholar

[19]

X. Lu, Monotone method and convergence acceleration for finite-difference solutions of parabolic problems with time delays, Numerical Methods for Partial Differential Equations, 11 (1995), 591-602.  doi: 10.1002/num.1690110605.  Google Scholar

[20] C. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, N.Y., 1992.   Google Scholar
[21]

C. V. Pao, Numerical methods for semilinear parabolic equations, SIAM J. Numer. Anal., 24 (1987), 24-35.  doi: 10.1137/0724003.  Google Scholar

[22]

C. V. Pao and X. Lu, Block monotone iterative methods for numerical solutions of nonlinear parabolic equations, SIAM J. Numer. Anal., 47 (2010), 4581-4606.  doi: 10.1137/090748706.  Google Scholar

[23]

W. RuanW. Feng and X. Lu, On traveling wave solutions in general reaction-diffusion systems with time delays, J. Math. Anal. Appl., 448 (2017), 376-400.  doi: 10.1016/j.jmaa.2016.10.070.  Google Scholar

[24]

W. RuanW. Feng and X. Lu, Wavefront solutions of quasilinear reaction-diffusion systems with mixed quasimonotonicity, Appl. Anal., 98 (2019), 934-968.  doi: 10.1080/00036811.2017.1408077.  Google Scholar

[25]

D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.  doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[26]

G. WangX. Liang and F. Wang, The competitive dynamics of populations subject to an Allee effect, Ecol. Modell., 124 (1999), 183-192.   Google Scholar

[27]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[28]

L. Zhou and C. V. Pao, Asymptotic behavior of a competition-diffusion system in population dynamics, Nonlinear Anal., 6 (1982), 1163-1184.  doi: 10.1016/0362-546X(82)90028-1.  Google Scholar

[29]

S. ZhouC. Liu and G. Wang, The competitive dynamics of metapopulationss subject to the Allee-like effect, Theor. Popul. Biol., 65 (2004), 29-37.   Google Scholar

[30]

S. ZhouY. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31.   Google Scholar

[31]

W. J. BoG. Lin and S. Ruan, Traveling wave solutions for time periodic reaction-diffusion systems, Discrete Cont. Dyn. A, 38 (2018), 4329-4351.  doi: 10.3934/dcds.2018189.  Google Scholar

[32]

Ma saharu Taniguchi, Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations, Discrete Cont. Dyn. A, 40 (2020), 3981-3995.  doi: 10.1016/j.anihpc.2019.05.001.  Google Scholar

[33]

X. BaoW. T. Li and Z. C. Wang, Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system, Commun. Pure Appl. Anal., 19 (2020), 253-277.  doi: 10.3934/cpaa.2020014.  Google Scholar

[34]

Y. YangY. R. Yang and X. J. Jiao, Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence, Electron. Res. Arc., 28 (2020), 1-13.   Google Scholar

show all references

References:
[1]

S. Ahmad and A. Lazer, An elementary approach to traveling front solutions to a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), 893-901.  doi: 10.1016/0362-546X(91)90152-Q.  Google Scholar

[2]

P. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. math. phys., 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.  Google Scholar

[3]

J. Blat and K. J. Brown, Bifurcation of steady-state solutions in predator-prey and competition systems, P. Roy. Soc. Edinb. A, 97 (1984), 21-34.  doi: 10.1017/S0308210500031802.  Google Scholar

[4]

A. Boumenir and V. Nguyen, Perron theorem in the monotone iteration for traveling waves in delayed in delayed reaction diffusion equations, J. Differ. Equ., 244 (2008), 1151-1570.  doi: 10.1016/j.jde.2008.01.004.  Google Scholar

[5]

C. Conley and R. Gardner, An application of the generalized Mores index to traveling wave solutions of a competition reaction diffusion model, Indiana U. Math. J., 44 (1984), 319-343.  doi: 10.1512/iumj.1984.33.33018.  Google Scholar

[6]

S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: a. heteroclinic connection in $R^{4}$, T. Am. Math. Soc., 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[7]

W. Feng, Competitive exclusion and persistence in models of resource and sexual competition, J. Math. Biol., 35 (1997), 683-694.  doi: 10.1007/s002850050071.  Google Scholar

[8]

W. Feng and X. Lu, Harmless delays for permanence in a class of population models with diffusion effects, J. Math. Anal. Appl., 206 (1997), 547-566.  doi: 10.1006/jmaa.1997.5265.  Google Scholar

[9]

W. Feng and X. Lu, Traveling waves and competitive exclusion in models of resource competition and mating interference, J. Math. Anal. Appl., 424 (2015), 542-562.  doi: 10.1016/j.jmaa.2014.11.027.  Google Scholar

[10]

W. FengW. Ruan and X. Lu, On existence of wavefront solutions in mixed monotone reaction-diffusion systems, Discrete Cont. Dyn. B, 21 (2016), 815-836.  doi: 10.3934/dcdsb.2016.21.815.  Google Scholar

[11]

R. Gardner, Existence and stability of traveling wave solutions of competition models: a degree theoretic approach, J. Differ. Equ., 44 (1982), 343-364.  doi: 10.1016/0022-0396(82)90001-8.  Google Scholar

[12]

X. Hou and W. Feng, Traveling waves and their stability in a coupled reaction diffusion system, Commun. Pure Appl. Anal., 10 (2011), 141-160.  doi: 10.3934/cpaa.2011.10.141.  Google Scholar

[13]

J. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Voltera system with delays, J. Math. Anal. Appl, 271 (2002), 455-466.  doi: 10.1016/S0022-247X(02)00135-X.  Google Scholar

[14]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis, Theory, Method and Application, 27 (1996), 579-587.  doi: 10.1016/0362-546X(95)00221-G.  Google Scholar

[15]

Y. Kan-on, Parameter dependence of propagation speed of traveling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.  doi: 10.1137/S0036141093244556.  Google Scholar

[16]

A. Leung, Nonlinear Systems of Partial Differential Equations: Applications to Life and Physical Sciences, World Scientific, Singapore, 2009. doi: 10.1142/9789814277709.  Google Scholar

[17]

A. W. LeungX. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited, Discrete Cont. Dyn. B, 15 (2011), 171-196.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[18]

Mark A. LewisBi ngtuan Li and Hans F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233.  doi: 10.1007/s002850200144.  Google Scholar

[19]

X. Lu, Monotone method and convergence acceleration for finite-difference solutions of parabolic problems with time delays, Numerical Methods for Partial Differential Equations, 11 (1995), 591-602.  doi: 10.1002/num.1690110605.  Google Scholar

[20] C. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, N.Y., 1992.   Google Scholar
[21]

C. V. Pao, Numerical methods for semilinear parabolic equations, SIAM J. Numer. Anal., 24 (1987), 24-35.  doi: 10.1137/0724003.  Google Scholar

[22]

C. V. Pao and X. Lu, Block monotone iterative methods for numerical solutions of nonlinear parabolic equations, SIAM J. Numer. Anal., 47 (2010), 4581-4606.  doi: 10.1137/090748706.  Google Scholar

[23]

W. RuanW. Feng and X. Lu, On traveling wave solutions in general reaction-diffusion systems with time delays, J. Math. Anal. Appl., 448 (2017), 376-400.  doi: 10.1016/j.jmaa.2016.10.070.  Google Scholar

[24]

W. RuanW. Feng and X. Lu, Wavefront solutions of quasilinear reaction-diffusion systems with mixed quasimonotonicity, Appl. Anal., 98 (2019), 934-968.  doi: 10.1080/00036811.2017.1408077.  Google Scholar

[25]

D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.  doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[26]

G. WangX. Liang and F. Wang, The competitive dynamics of populations subject to an Allee effect, Ecol. Modell., 124 (1999), 183-192.   Google Scholar

[27]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[28]

L. Zhou and C. V. Pao, Asymptotic behavior of a competition-diffusion system in population dynamics, Nonlinear Anal., 6 (1982), 1163-1184.  doi: 10.1016/0362-546X(82)90028-1.  Google Scholar

[29]

S. ZhouC. Liu and G. Wang, The competitive dynamics of metapopulationss subject to the Allee-like effect, Theor. Popul. Biol., 65 (2004), 29-37.   Google Scholar

[30]

S. ZhouY. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31.   Google Scholar

[31]

W. J. BoG. Lin and S. Ruan, Traveling wave solutions for time periodic reaction-diffusion systems, Discrete Cont. Dyn. A, 38 (2018), 4329-4351.  doi: 10.3934/dcds.2018189.  Google Scholar

[32]

Ma saharu Taniguchi, Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations, Discrete Cont. Dyn. A, 40 (2020), 3981-3995.  doi: 10.1016/j.anihpc.2019.05.001.  Google Scholar

[33]

X. BaoW. T. Li and Z. C. Wang, Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system, Commun. Pure Appl. Anal., 19 (2020), 253-277.  doi: 10.3934/cpaa.2020014.  Google Scholar

[34]

Y. YangY. R. Yang and X. J. Jiao, Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence, Electron. Res. Arc., 28 (2020), 1-13.   Google Scholar

Figure 1.  Permanence in the competition model under Allee effect
Figure 2.  Asymptotic stability of the steady state $ (0,1) $, $ v $ species dominance
Figure 3.  Traveling wave front connecting $ (u_s^{(1)},0) $ to $ (0,1) $, competitive exclusion of $ u $-species
Figure 4.  Traveling wave front connecting $ (u_s^{(2)},0) $ to $ (0,1) $, competitive exclusion of $ u $-species
[1]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[2]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[3]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[4]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[5]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[6]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[8]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[9]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[10]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[11]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[12]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[13]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[14]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[15]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[16]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[17]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[18]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[19]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[20]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (77)
  • HTML views (50)
  • Cited by (0)

Other articles
by authors

[Back to Top]