July  2020, 19(12): 5609-5626. doi: 10.3934/cpaa.2020256

On competition models under allee effect: Asymptotic behavior and traveling waves

Department of Mathematics and Statistics, University of North Carolina at Wilmington, Wilmington, NC 28403

*Corresponding author

Received  February 2020 Revised  June 2020 Published  October 2020

In this article, we study a reaction-diffusion model on infinite spatial domain for two competing biological species ($ u $ and $ v $). Under one-side Allee effect on $ u $-species, the model demonstrates complexity on its coexistence and $ u $-dominance steady states. The conditions for persistence, permanence and competitive exclusion of the species are obtained through analysis on asymptotic behavior of the solutions and stability of the steady states, including the attraction regions and convergent rates depending on the biological parameters. When the Allee effect constant $ K $ is large relative to other biological parameters, the asymptotic stability of the $ v $-dominance state $ (0,\:1) $ indicates the competitive exclusion of the $ u $-species. Applying upper-lower solution method, we further prove that for a family of wave speeds with specific minimum wave speed determined by several biological parameters (including the magnitude of the $ u $-dominance states), there exist traveling wave solutions flowing from the $ u $-dominance states to the $ v $-dominance state. The asymptotic rates of the traveling waves at $ \xi \rightarrow \mp \infty $ are also explicitly calculated. Finally, numerical simulations are presented to illustrate the theoretical results and population dynamics of coexistence or dominance-shifting.

Citation: Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256
References:
[1]

S. Ahmad and A. Lazer, An elementary approach to traveling front solutions to a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), 893-901.  doi: 10.1016/0362-546X(91)90152-Q.  Google Scholar

[2]

P. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. math. phys., 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.  Google Scholar

[3]

J. Blat and K. J. Brown, Bifurcation of steady-state solutions in predator-prey and competition systems, P. Roy. Soc. Edinb. A, 97 (1984), 21-34.  doi: 10.1017/S0308210500031802.  Google Scholar

[4]

A. Boumenir and V. Nguyen, Perron theorem in the monotone iteration for traveling waves in delayed in delayed reaction diffusion equations, J. Differ. Equ., 244 (2008), 1151-1570.  doi: 10.1016/j.jde.2008.01.004.  Google Scholar

[5]

C. Conley and R. Gardner, An application of the generalized Mores index to traveling wave solutions of a competition reaction diffusion model, Indiana U. Math. J., 44 (1984), 319-343.  doi: 10.1512/iumj.1984.33.33018.  Google Scholar

[6]

S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: a. heteroclinic connection in $R^{4}$, T. Am. Math. Soc., 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[7]

W. Feng, Competitive exclusion and persistence in models of resource and sexual competition, J. Math. Biol., 35 (1997), 683-694.  doi: 10.1007/s002850050071.  Google Scholar

[8]

W. Feng and X. Lu, Harmless delays for permanence in a class of population models with diffusion effects, J. Math. Anal. Appl., 206 (1997), 547-566.  doi: 10.1006/jmaa.1997.5265.  Google Scholar

[9]

W. Feng and X. Lu, Traveling waves and competitive exclusion in models of resource competition and mating interference, J. Math. Anal. Appl., 424 (2015), 542-562.  doi: 10.1016/j.jmaa.2014.11.027.  Google Scholar

[10]

W. FengW. Ruan and X. Lu, On existence of wavefront solutions in mixed monotone reaction-diffusion systems, Discrete Cont. Dyn. B, 21 (2016), 815-836.  doi: 10.3934/dcdsb.2016.21.815.  Google Scholar

[11]

R. Gardner, Existence and stability of traveling wave solutions of competition models: a degree theoretic approach, J. Differ. Equ., 44 (1982), 343-364.  doi: 10.1016/0022-0396(82)90001-8.  Google Scholar

[12]

X. Hou and W. Feng, Traveling waves and their stability in a coupled reaction diffusion system, Commun. Pure Appl. Anal., 10 (2011), 141-160.  doi: 10.3934/cpaa.2011.10.141.  Google Scholar

[13]

J. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Voltera system with delays, J. Math. Anal. Appl, 271 (2002), 455-466.  doi: 10.1016/S0022-247X(02)00135-X.  Google Scholar

[14]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis, Theory, Method and Application, 27 (1996), 579-587.  doi: 10.1016/0362-546X(95)00221-G.  Google Scholar

[15]

Y. Kan-on, Parameter dependence of propagation speed of traveling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.  doi: 10.1137/S0036141093244556.  Google Scholar

[16]

A. Leung, Nonlinear Systems of Partial Differential Equations: Applications to Life and Physical Sciences, World Scientific, Singapore, 2009. doi: 10.1142/9789814277709.  Google Scholar

[17]

A. W. LeungX. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited, Discrete Cont. Dyn. B, 15 (2011), 171-196.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[18]

Mark A. LewisBi ngtuan Li and Hans F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233.  doi: 10.1007/s002850200144.  Google Scholar

[19]

X. Lu, Monotone method and convergence acceleration for finite-difference solutions of parabolic problems with time delays, Numerical Methods for Partial Differential Equations, 11 (1995), 591-602.  doi: 10.1002/num.1690110605.  Google Scholar

[20] C. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, N.Y., 1992.   Google Scholar
[21]

C. V. Pao, Numerical methods for semilinear parabolic equations, SIAM J. Numer. Anal., 24 (1987), 24-35.  doi: 10.1137/0724003.  Google Scholar

[22]

C. V. Pao and X. Lu, Block monotone iterative methods for numerical solutions of nonlinear parabolic equations, SIAM J. Numer. Anal., 47 (2010), 4581-4606.  doi: 10.1137/090748706.  Google Scholar

[23]

W. RuanW. Feng and X. Lu, On traveling wave solutions in general reaction-diffusion systems with time delays, J. Math. Anal. Appl., 448 (2017), 376-400.  doi: 10.1016/j.jmaa.2016.10.070.  Google Scholar

[24]

W. RuanW. Feng and X. Lu, Wavefront solutions of quasilinear reaction-diffusion systems with mixed quasimonotonicity, Appl. Anal., 98 (2019), 934-968.  doi: 10.1080/00036811.2017.1408077.  Google Scholar

[25]

D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.  doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[26]

G. WangX. Liang and F. Wang, The competitive dynamics of populations subject to an Allee effect, Ecol. Modell., 124 (1999), 183-192.   Google Scholar

[27]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[28]

L. Zhou and C. V. Pao, Asymptotic behavior of a competition-diffusion system in population dynamics, Nonlinear Anal., 6 (1982), 1163-1184.  doi: 10.1016/0362-546X(82)90028-1.  Google Scholar

[29]

S. ZhouC. Liu and G. Wang, The competitive dynamics of metapopulationss subject to the Allee-like effect, Theor. Popul. Biol., 65 (2004), 29-37.   Google Scholar

[30]

S. ZhouY. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31.   Google Scholar

[31]

W. J. BoG. Lin and S. Ruan, Traveling wave solutions for time periodic reaction-diffusion systems, Discrete Cont. Dyn. A, 38 (2018), 4329-4351.  doi: 10.3934/dcds.2018189.  Google Scholar

[32]

Ma saharu Taniguchi, Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations, Discrete Cont. Dyn. A, 40 (2020), 3981-3995.  doi: 10.1016/j.anihpc.2019.05.001.  Google Scholar

[33]

X. BaoW. T. Li and Z. C. Wang, Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system, Commun. Pure Appl. Anal., 19 (2020), 253-277.  doi: 10.3934/cpaa.2020014.  Google Scholar

[34]

Y. YangY. R. Yang and X. J. Jiao, Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence, Electron. Res. Arc., 28 (2020), 1-13.   Google Scholar

show all references

References:
[1]

S. Ahmad and A. Lazer, An elementary approach to traveling front solutions to a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), 893-901.  doi: 10.1016/0362-546X(91)90152-Q.  Google Scholar

[2]

P. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. math. phys., 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.  Google Scholar

[3]

J. Blat and K. J. Brown, Bifurcation of steady-state solutions in predator-prey and competition systems, P. Roy. Soc. Edinb. A, 97 (1984), 21-34.  doi: 10.1017/S0308210500031802.  Google Scholar

[4]

A. Boumenir and V. Nguyen, Perron theorem in the monotone iteration for traveling waves in delayed in delayed reaction diffusion equations, J. Differ. Equ., 244 (2008), 1151-1570.  doi: 10.1016/j.jde.2008.01.004.  Google Scholar

[5]

C. Conley and R. Gardner, An application of the generalized Mores index to traveling wave solutions of a competition reaction diffusion model, Indiana U. Math. J., 44 (1984), 319-343.  doi: 10.1512/iumj.1984.33.33018.  Google Scholar

[6]

S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: a. heteroclinic connection in $R^{4}$, T. Am. Math. Soc., 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[7]

W. Feng, Competitive exclusion and persistence in models of resource and sexual competition, J. Math. Biol., 35 (1997), 683-694.  doi: 10.1007/s002850050071.  Google Scholar

[8]

W. Feng and X. Lu, Harmless delays for permanence in a class of population models with diffusion effects, J. Math. Anal. Appl., 206 (1997), 547-566.  doi: 10.1006/jmaa.1997.5265.  Google Scholar

[9]

W. Feng and X. Lu, Traveling waves and competitive exclusion in models of resource competition and mating interference, J. Math. Anal. Appl., 424 (2015), 542-562.  doi: 10.1016/j.jmaa.2014.11.027.  Google Scholar

[10]

W. FengW. Ruan and X. Lu, On existence of wavefront solutions in mixed monotone reaction-diffusion systems, Discrete Cont. Dyn. B, 21 (2016), 815-836.  doi: 10.3934/dcdsb.2016.21.815.  Google Scholar

[11]

R. Gardner, Existence and stability of traveling wave solutions of competition models: a degree theoretic approach, J. Differ. Equ., 44 (1982), 343-364.  doi: 10.1016/0022-0396(82)90001-8.  Google Scholar

[12]

X. Hou and W. Feng, Traveling waves and their stability in a coupled reaction diffusion system, Commun. Pure Appl. Anal., 10 (2011), 141-160.  doi: 10.3934/cpaa.2011.10.141.  Google Scholar

[13]

J. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Voltera system with delays, J. Math. Anal. Appl, 271 (2002), 455-466.  doi: 10.1016/S0022-247X(02)00135-X.  Google Scholar

[14]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis, Theory, Method and Application, 27 (1996), 579-587.  doi: 10.1016/0362-546X(95)00221-G.  Google Scholar

[15]

Y. Kan-on, Parameter dependence of propagation speed of traveling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.  doi: 10.1137/S0036141093244556.  Google Scholar

[16]

A. Leung, Nonlinear Systems of Partial Differential Equations: Applications to Life and Physical Sciences, World Scientific, Singapore, 2009. doi: 10.1142/9789814277709.  Google Scholar

[17]

A. W. LeungX. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited, Discrete Cont. Dyn. B, 15 (2011), 171-196.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[18]

Mark A. LewisBi ngtuan Li and Hans F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233.  doi: 10.1007/s002850200144.  Google Scholar

[19]

X. Lu, Monotone method and convergence acceleration for finite-difference solutions of parabolic problems with time delays, Numerical Methods for Partial Differential Equations, 11 (1995), 591-602.  doi: 10.1002/num.1690110605.  Google Scholar

[20] C. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, N.Y., 1992.   Google Scholar
[21]

C. V. Pao, Numerical methods for semilinear parabolic equations, SIAM J. Numer. Anal., 24 (1987), 24-35.  doi: 10.1137/0724003.  Google Scholar

[22]

C. V. Pao and X. Lu, Block monotone iterative methods for numerical solutions of nonlinear parabolic equations, SIAM J. Numer. Anal., 47 (2010), 4581-4606.  doi: 10.1137/090748706.  Google Scholar

[23]

W. RuanW. Feng and X. Lu, On traveling wave solutions in general reaction-diffusion systems with time delays, J. Math. Anal. Appl., 448 (2017), 376-400.  doi: 10.1016/j.jmaa.2016.10.070.  Google Scholar

[24]

W. RuanW. Feng and X. Lu, Wavefront solutions of quasilinear reaction-diffusion systems with mixed quasimonotonicity, Appl. Anal., 98 (2019), 934-968.  doi: 10.1080/00036811.2017.1408077.  Google Scholar

[25]

D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.  doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[26]

G. WangX. Liang and F. Wang, The competitive dynamics of populations subject to an Allee effect, Ecol. Modell., 124 (1999), 183-192.   Google Scholar

[27]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[28]

L. Zhou and C. V. Pao, Asymptotic behavior of a competition-diffusion system in population dynamics, Nonlinear Anal., 6 (1982), 1163-1184.  doi: 10.1016/0362-546X(82)90028-1.  Google Scholar

[29]

S. ZhouC. Liu and G. Wang, The competitive dynamics of metapopulationss subject to the Allee-like effect, Theor. Popul. Biol., 65 (2004), 29-37.   Google Scholar

[30]

S. ZhouY. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31.   Google Scholar

[31]

W. J. BoG. Lin and S. Ruan, Traveling wave solutions for time periodic reaction-diffusion systems, Discrete Cont. Dyn. A, 38 (2018), 4329-4351.  doi: 10.3934/dcds.2018189.  Google Scholar

[32]

Ma saharu Taniguchi, Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations, Discrete Cont. Dyn. A, 40 (2020), 3981-3995.  doi: 10.1016/j.anihpc.2019.05.001.  Google Scholar

[33]

X. BaoW. T. Li and Z. C. Wang, Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system, Commun. Pure Appl. Anal., 19 (2020), 253-277.  doi: 10.3934/cpaa.2020014.  Google Scholar

[34]

Y. YangY. R. Yang and X. J. Jiao, Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence, Electron. Res. Arc., 28 (2020), 1-13.   Google Scholar

Figure 1.  Permanence in the competition model under Allee effect
Figure 2.  Asymptotic stability of the steady state $ (0,1) $, $ v $ species dominance
Figure 3.  Traveling wave front connecting $ (u_s^{(1)},0) $ to $ (0,1) $, competitive exclusion of $ u $-species
Figure 4.  Traveling wave front connecting $ (u_s^{(2)},0) $ to $ (0,1) $, competitive exclusion of $ u $-species
[1]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Telmo Peixe. Permanence in polymatrix replicators. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020032

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[6]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[7]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[8]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[9]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[10]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[11]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[14]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[15]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[18]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[19]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[20]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (51)
  • HTML views (48)
  • Cited by (0)

Other articles
by authors

[Back to Top]