
-
Previous Article
Scattering of the focusing energy-critical NLS with inverse square potential in the radial case
- CPAA Home
- This Issue
-
Next Article
A note on Riemann-Liouville fractional Sobolev spaces
Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters
1. | Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China |
2. | Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China |
In this paper, we concern with the problem of limit cycle bifurcation for a class of piecewise smooth cubic systems. Using the first order Melnikov function we prove that at least thirteen limit cycles can be bifurcated from periodic solutions surrounding the center.
References:
[1] |
L. P. da Cruz, D. D. Novaes and J. Torregrosa,
New lower bound for the Hilbert number in piecewise quadratic differential systems, J. Differ. Equ., 226 (2019), 4170-4203.
doi: 10.1016/j.jde.2018.09.032. |
[2] |
J. Gin$\acute{e}$ and J. Llibre,
Limit cycles of cubic polynomial vector fields via the averaging theory, Nonlinear Anal., 66 (2007), 1707-1721.
doi: 10.1016/j.na.2006.02.016. |
[3] |
M. Grau, F. Ma$\tilde{n}$osas and J. Villadelprat,
A Chebyshew criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.
doi: 10.1090/S0002-9947-2010-05007-X. |
[4] |
L. F. S. Gouveia and J. Torregrosa, 24 crossing limit cycles in only one nest for piecewise cubic systems, Appl. Math. Lett., 103 (2020), 6pp.
doi: 10.1016/j.aml.2019.106189. |
[5] |
M. Han, G. Chen and C. Sun,
On the number of limit cycles in near-Hamiltonian polynomial systems, Int. J. Bifur. Chaos, 17 (2007), 2033-2047.
doi: 10.1142/S0218127407018208. |
[6] |
M. Han and L. Sheng,
Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.
doi: 10.11948/2015061. |
[7] |
M. Han and Y. Xiong,
Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters, Chaos Solitons Fractals, 68 (2014), 20-29.
doi: 10.1016/j.chaos.2014.07.005. |
[8] |
S. Huan and X. Yang,
On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32 (2012), 2147-2164.
doi: 10.3934/dcds.2012.32.2147. |
[9] |
S. Karlin and W. J. Studden, Tchebycheff systems: With Applications in Analysis and Statistics, Pure Appa. math., Interscience Publishers, New York, London, Sydney, 1966. |
[10] |
F. Liang and M. Han,
Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos Solitons Fractals, 45 (2012), 454-464.
doi: 10.1016/j.chaos.2011.09.013. |
[11] |
S. Li and T. Huang,
Limit cycles for piecewise smooth perturbations of a cubic polynomial differential center, J. Differ. Equ., 2015 (2015), 1-17.
|
[12] |
X. Liu and M. Han,
Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Int. J. Bifur. Chaos, 5 (2010), 1379-1390.
doi: 10.1142/S021812741002654X. |
[13] |
J. Llibre and J. Itikawa,
Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comput. Appl. Math., 277 (2015), 171-191.
doi: 10.1016/j.cam.2014.09.007. |
[14] |
C. Li, W. Li, J. Llibre and Z. Zhang,
Linear estimation of the number of zeros of Abelian integrals for some cubic isochronous centers, J. Differ. Equ., 180 (2002), 307-333.
doi: 10.1006/jdeq.2001.4064. |
[15] |
J. Llibre, C. Mereu and D. D. Novaes,
Averaging theory for discontinuous piecewise differential systems, J. Differ. Equ., 258 (2015), 4007-4032.
doi: 10.1016/j.jde.2015.01.022. |
[16] |
J. Llibre, D. D. Novaes and M. A. Teixeira,
On the birth of limit cycles for non-smooth dynamical systems, Bull. Sci. Math., 139 (2015), 229-244.
doi: 10.1016/j.bulsci.2014.08.011. |
[17] |
J. Llibre and G. $\acute{S}$wirszcz,
On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Ser. A. Math. Anal., 18 (2011), 203-314.
|
[18] |
S. Li and Y. Zhao, Limit cycles of perturbed cubic isochronous center via the second order averaging method, Int. J. Bifur. Chaos, 24 (2014), 8pp.
doi: 10.1142/S0218127414500357. |
[19] |
J. N. Mather,
Stability of $C^{\infty}$ Mappings: I. The Division Theorem, Ann. Math., 87 (1968), 89-104.
doi: 10.2307/1970595. |
[20] |
D. D. Novaes and J. Torregrose,
On extended Chebyshev systems with positive accuracy, J. Math. Anal. Appl., 448 (2017), 171-186.
doi: 10.1016/j.jmaa.2016.10.076. |
[21] |
J. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems, 2$^{nd}$ edition, Applied Mathematical Sciences, Springer New York, 2007. |
[22] |
Y. Xiong, Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters, J. Math. Anal. Appl., 421 (2015), 260-275.
doi: 10.1016/j.jmaa.2014.07.013. |
[23] |
Y. Xiong, M. Han and V. G. Romanovski, The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, Int. J. Bifur. Chaos, 27 (2017), 14pp.
doi: 10.1142/S0218127417501267. |
show all references
References:
[1] |
L. P. da Cruz, D. D. Novaes and J. Torregrosa,
New lower bound for the Hilbert number in piecewise quadratic differential systems, J. Differ. Equ., 226 (2019), 4170-4203.
doi: 10.1016/j.jde.2018.09.032. |
[2] |
J. Gin$\acute{e}$ and J. Llibre,
Limit cycles of cubic polynomial vector fields via the averaging theory, Nonlinear Anal., 66 (2007), 1707-1721.
doi: 10.1016/j.na.2006.02.016. |
[3] |
M. Grau, F. Ma$\tilde{n}$osas and J. Villadelprat,
A Chebyshew criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.
doi: 10.1090/S0002-9947-2010-05007-X. |
[4] |
L. F. S. Gouveia and J. Torregrosa, 24 crossing limit cycles in only one nest for piecewise cubic systems, Appl. Math. Lett., 103 (2020), 6pp.
doi: 10.1016/j.aml.2019.106189. |
[5] |
M. Han, G. Chen and C. Sun,
On the number of limit cycles in near-Hamiltonian polynomial systems, Int. J. Bifur. Chaos, 17 (2007), 2033-2047.
doi: 10.1142/S0218127407018208. |
[6] |
M. Han and L. Sheng,
Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.
doi: 10.11948/2015061. |
[7] |
M. Han and Y. Xiong,
Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters, Chaos Solitons Fractals, 68 (2014), 20-29.
doi: 10.1016/j.chaos.2014.07.005. |
[8] |
S. Huan and X. Yang,
On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32 (2012), 2147-2164.
doi: 10.3934/dcds.2012.32.2147. |
[9] |
S. Karlin and W. J. Studden, Tchebycheff systems: With Applications in Analysis and Statistics, Pure Appa. math., Interscience Publishers, New York, London, Sydney, 1966. |
[10] |
F. Liang and M. Han,
Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos Solitons Fractals, 45 (2012), 454-464.
doi: 10.1016/j.chaos.2011.09.013. |
[11] |
S. Li and T. Huang,
Limit cycles for piecewise smooth perturbations of a cubic polynomial differential center, J. Differ. Equ., 2015 (2015), 1-17.
|
[12] |
X. Liu and M. Han,
Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Int. J. Bifur. Chaos, 5 (2010), 1379-1390.
doi: 10.1142/S021812741002654X. |
[13] |
J. Llibre and J. Itikawa,
Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comput. Appl. Math., 277 (2015), 171-191.
doi: 10.1016/j.cam.2014.09.007. |
[14] |
C. Li, W. Li, J. Llibre and Z. Zhang,
Linear estimation of the number of zeros of Abelian integrals for some cubic isochronous centers, J. Differ. Equ., 180 (2002), 307-333.
doi: 10.1006/jdeq.2001.4064. |
[15] |
J. Llibre, C. Mereu and D. D. Novaes,
Averaging theory for discontinuous piecewise differential systems, J. Differ. Equ., 258 (2015), 4007-4032.
doi: 10.1016/j.jde.2015.01.022. |
[16] |
J. Llibre, D. D. Novaes and M. A. Teixeira,
On the birth of limit cycles for non-smooth dynamical systems, Bull. Sci. Math., 139 (2015), 229-244.
doi: 10.1016/j.bulsci.2014.08.011. |
[17] |
J. Llibre and G. $\acute{S}$wirszcz,
On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Ser. A. Math. Anal., 18 (2011), 203-314.
|
[18] |
S. Li and Y. Zhao, Limit cycles of perturbed cubic isochronous center via the second order averaging method, Int. J. Bifur. Chaos, 24 (2014), 8pp.
doi: 10.1142/S0218127414500357. |
[19] |
J. N. Mather,
Stability of $C^{\infty}$ Mappings: I. The Division Theorem, Ann. Math., 87 (1968), 89-104.
doi: 10.2307/1970595. |
[20] |
D. D. Novaes and J. Torregrose,
On extended Chebyshev systems with positive accuracy, J. Math. Anal. Appl., 448 (2017), 171-186.
doi: 10.1016/j.jmaa.2016.10.076. |
[21] |
J. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems, 2$^{nd}$ edition, Applied Mathematical Sciences, Springer New York, 2007. |
[22] |
Y. Xiong, Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters, J. Math. Anal. Appl., 421 (2015), 260-275.
doi: 10.1016/j.jmaa.2014.07.013. |
[23] |
Y. Xiong, M. Han and V. G. Romanovski, The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, Int. J. Bifur. Chaos, 27 (2017), 14pp.
doi: 10.1142/S0218127417501267. |
[1] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5581-5599. doi: 10.3934/dcdsb.2020368 |
[2] |
Junmin Yang, Maoan Han. On the number of limit cycles of a cubic Near-Hamiltonian system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 827-840. doi: 10.3934/dcds.2009.24.827 |
[3] |
Wenye Liu, Maoan Han. Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022053 |
[4] |
Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 |
[5] |
Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021264 |
[6] |
Yuan Chang, Yuzhen Bai. Limit cycle bifurcations by perturbing piecewise Hamiltonian systems with a nonregular switching line via multiple parameters. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022090 |
[7] |
Hang Zheng, Yonghui Xia. Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021319 |
[8] |
Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803 |
[9] |
Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie. Detecting alien limit cycles near a Hamiltonian 2-saddle cycle. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1081-1108. doi: 10.3934/dcds.2009.25.1081 |
[10] |
Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123 |
[11] |
Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133 |
[12] |
Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189 |
[13] |
Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995 |
[14] |
Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 |
[15] |
Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893 |
[16] |
Pablo Amster, Mariel Paula Kuna, Gonzalo Robledo. Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1695-1709. doi: 10.3934/cpaa.2019080 |
[17] |
Xiaolei Zhang, Yanqin Xiong, Yi Zhang. The number of limit cycles by perturbing a piecewise linear system with three zones. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1833-1855. doi: 10.3934/cpaa.2022049 |
[18] |
SP. Nachiappan, N. Jawahar, A. C. Arunkumar. Evolution of operating parameters for multiple vendors multiple buyers vendor managed inventory system with outsourcing. Journal of Industrial and Management Optimization, 2007, 3 (3) : 597-618. doi: 10.3934/jimo.2007.3.597 |
[19] |
Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure and Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1 |
[20] |
Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations and Control Theory, 2022, 11 (3) : 729-748. doi: 10.3934/eect.2021023 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]