-
Previous Article
Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation
- CPAA Home
- This Issue
-
Next Article
Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters
Scattering of the focusing energy-critical NLS with inverse square potential in the radial case
School of Mathematics, Southeast University, Nanjing, Jiangsu Province, 211189, China |
We consider the Cauchy problem of the focusing energy-critical nonlinear Schrödinger equation with an inverse square potential. We prove that if any radial solution obeys the supreme of the kinetic energy over the maximal lifespan is below the kinetic energy of the ground state solution, then the solution exists globally in time and scatters in both time directions.
References:
[1] |
T. Aubin,
Problémes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573-598.
|
[2] |
H. Bahouri and P. Gérard,
High frequency approximation of solutions to critical nonlinear wave equations, Am. J. Math., 121 (1999), 131-175.
|
[3] |
J. Bourgain,
Global well-posedness of defocusing 3D critical NLS in the radial case, J. Am. Math. Soc., 12 (1999), 145-171.
doi: 10.1090/S0894-0347-99-00283-0. |
[4] |
J. Bourgain, New global well-posedness results for nonlinear Schrödinger equations, AMS Colloquium Publications, 46, 1999.
doi: 10.1090/coll/046. |
[5] |
N. Burq, F. Planchon, J. Stalker and A. S. Tahvildar-Zadeh,
Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.
doi: 10.1016/S0022-1236(03)00238-6. |
[6] |
T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes, 10 (2003).
doi: 10.1090/cln/010. |
[7] |
T. Cazenave and F. Weissler,
The Cauchy problem for the critical nonlinear Schrödinger equation in $H^{s}$, Nonlinear Anal., 14 (1990), 807-836.
doi: 10.1016/0362-546X(90)90023-A. |
[8] |
Y. Chen, J. Lu and F. Meng, Focusing nonlinear Hartree equation with inverse-square potential, arXiv: 1907.12757.
doi: 10.1063/1.5054167. |
[9] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{3}$, Annals of Math., 167 (2008), 767-865.
doi: 10.4007/annals.2008.167.767. |
[10] |
B. Dodson, Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension $d = 4$, Ann. Sci. Éc. Norm. Supér, 52 (2019), 139-180. Google Scholar |
[11] |
G. Grillakis,
On nonlinear Schrödinger equations, Commun. PDE, 25 (2000), 1827-1844.
doi: 10.1080/03605300008821569. |
[12] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Am. J. Math., 120 (1998), 955-980.
|
[13] |
C. Kenig and F. Merle,
Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[14] |
C. Kenig and F. Merle,
Scattering for bounded solutions to the cubic, defocusing NLS in 3 dimensions, T. Am. Math. Soc., 362 (2010), 1937-1962.
doi: 10.1090/S0002-9947-09-04722-9. |
[15] |
S. Keraani,
On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192.
doi: 10.1016/j.jfa.2005.10.005. |
[16] |
R. Killip, C. Miao, M. Visan, J. Zhang and J. Zheng, Sobolev spaces adapted to the Schrödinger operator with inverse-square potential, Math. Z., 288 (2018), 1273-1298.
doi: 10.1007/s00209-017-1934-8. |
[17] |
R. Killip, J. Murphy, M. Visan and J. Zheng,
The focusing cubic NLS with inverse-square potential in three space dimensions, Differ. Integral Equ., 30 (2017), 161-206.
|
[18] |
R. Killip, C. Miao, M. Visan, J. Zhang and J. Zheng, The energy-critical NLS with inverse-square potential, Discrete Contin. Dyn. Syst., 37 (2017), 3831-3866.
doi: 10.3934/dcds.2017162. |
[19] |
R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Am. J. Math., 132 (2010), 361–424.
doi: 10.1353/ajm.0.0107. |
[20] |
R. Killip and M. Visan, Nonlinear Schrö dinger equations at critical regularity, Evol. Equ., (2009), 89–100.
doi: 10.1007/s00208-013-0960-z. |
[21] |
R. Killip, M. Visan, and X. Zhang, Quintic NLS in the exterior of a strictly convex obstacle, Am. J. Math., 138 (2016), 1193-1346.
doi: 10.1353/ajm.2016.0039. |
[22] |
R. Killip, M. Visan and X. Zhang, Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schrödinger equation on $\mathbb{R}^{2}$. arXiv: 1606.07738. Google Scholar |
[23] |
D. Li and X. Zhang, Dynamics for the energy critical nonlinear Schrödinger equation in high dimensions, J. Funct. Anal., 256 (2009), 1928-1961.
doi: 10.1016/j.jfa.2008.12.007. |
[24] |
D. Li and X. Zhang, Dynamics for the energy critical nonlinear Wave equation in high dimensions, Trans. AMS., 363 (2011), 1137-1160.
doi: 10.1090/S0002-9947-2010-04999-2. |
[25] |
J. Lu, C. Miao and J. Murphy,
Scattering in $H^{1}$ for the intercritical NLS with an inverse square potential, J. Differ. Equ., 264 (2018), 3174-3211.
doi: 10.1016/j.jde.2017.11.015. |
[26] |
F. Merle and L. Vega,
Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D, International Mathematics Research Notices, 1998 (1998), 399-425.
doi: 10.1155/S1073792898000270. |
[27] |
C. Miao, J. Murphy and J. Zheng,
The energy-critical nonlinear wave equation with an inverse-square potential, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 37 (2020), 417-456.
doi: 10.1016/j.anihpc.2019.09.004. |
[28] |
F. Planchon, J. Stalker and A. S. Tahvildar-Zadeh,
Dispersive estimates for wave equation with the inverse-square potential, Discrete Contin. Dyn. Syst. Ser. A, 9 (2003), 1387-1400.
doi: 10.3934/dcds.2003.9.1387. |
[29] |
E. Ryckman and M. Visan,
Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{1+4}$, Am. J. Math., 129 (2007), 1-60.
doi: 10.1353/ajm.2007.0004. |
[30] |
G. Talenti,
Best constant in Sobolev inequality, Ann. Mat. Pura. Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013. |
[31] |
T. Tao,
Global well-posedness and scattering for higher-dimensional energy-critical non-linear Schrödinger equation for radial data, New York J. Math., 11 (2005), 57-80.
|
[32] |
T. Tao and M. Visan,
Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differ. Equ., 118 (2005), 1-28.
|
[33] |
J. L. Vazquez and E. Zuazua,
The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.
doi: 10.1006/jfan.1999.3556. |
[34] |
M. Visan,
The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.
doi: 10.1215/S0012-7094-07-13825-0. |
[35] |
K. Yang, Dynamics of The Energy Critical Nonlinear Schrödinger Equation with Inverse Square Potential, PhD thesis, University of Iowa, 2017. |
[36] |
K. Yang,
The focusing NLS on exterior domains in three dimensions, Commun. Pure. Appl. Anal., 16 (2017), 2269-2297.
doi: 10.3934/cpaa.2017112. |
[37] |
K. Yang,
The symplectic non-squeezing properties of mass subcritical Hartree equations, J. Math. Anal. Appl., 449 (2017), 427-455.
doi: 10.1016/j.jmaa.2016.11.079. |
[38] |
K. Yang, Scattering of the energy-critical NLS with inverse square potential, J. Math. Anal. Appl., 487 (2020), 124006.
doi: 10.1016/j.jmaa.2020.124006. |
[39] |
J. Zhang and J. Zheng, Strichartz estimates and wave equation in a conic singular space, Math. Ann., 376 (2020), 525-581.
doi: 10.1007/s00208-019-01892-7. |
[40] |
J. Zhang and J. Zheng,
Scattering theory for nonlinear Schrödinger with inverse-square potential, J. Funct. Anal., 267 (2014), 2907-2932.
doi: 10.1016/j.jfa.2014.08.012. |
[41] |
J. Zheng, Focusing NLS with inverse square potential, J. Math. Phys., 59 (2018), 111502, 14pp.
doi: 10.1063/1.5054167. |
show all references
References:
[1] |
T. Aubin,
Problémes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573-598.
|
[2] |
H. Bahouri and P. Gérard,
High frequency approximation of solutions to critical nonlinear wave equations, Am. J. Math., 121 (1999), 131-175.
|
[3] |
J. Bourgain,
Global well-posedness of defocusing 3D critical NLS in the radial case, J. Am. Math. Soc., 12 (1999), 145-171.
doi: 10.1090/S0894-0347-99-00283-0. |
[4] |
J. Bourgain, New global well-posedness results for nonlinear Schrödinger equations, AMS Colloquium Publications, 46, 1999.
doi: 10.1090/coll/046. |
[5] |
N. Burq, F. Planchon, J. Stalker and A. S. Tahvildar-Zadeh,
Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.
doi: 10.1016/S0022-1236(03)00238-6. |
[6] |
T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes, 10 (2003).
doi: 10.1090/cln/010. |
[7] |
T. Cazenave and F. Weissler,
The Cauchy problem for the critical nonlinear Schrödinger equation in $H^{s}$, Nonlinear Anal., 14 (1990), 807-836.
doi: 10.1016/0362-546X(90)90023-A. |
[8] |
Y. Chen, J. Lu and F. Meng, Focusing nonlinear Hartree equation with inverse-square potential, arXiv: 1907.12757.
doi: 10.1063/1.5054167. |
[9] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{3}$, Annals of Math., 167 (2008), 767-865.
doi: 10.4007/annals.2008.167.767. |
[10] |
B. Dodson, Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension $d = 4$, Ann. Sci. Éc. Norm. Supér, 52 (2019), 139-180. Google Scholar |
[11] |
G. Grillakis,
On nonlinear Schrödinger equations, Commun. PDE, 25 (2000), 1827-1844.
doi: 10.1080/03605300008821569. |
[12] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Am. J. Math., 120 (1998), 955-980.
|
[13] |
C. Kenig and F. Merle,
Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[14] |
C. Kenig and F. Merle,
Scattering for bounded solutions to the cubic, defocusing NLS in 3 dimensions, T. Am. Math. Soc., 362 (2010), 1937-1962.
doi: 10.1090/S0002-9947-09-04722-9. |
[15] |
S. Keraani,
On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192.
doi: 10.1016/j.jfa.2005.10.005. |
[16] |
R. Killip, C. Miao, M. Visan, J. Zhang and J. Zheng, Sobolev spaces adapted to the Schrödinger operator with inverse-square potential, Math. Z., 288 (2018), 1273-1298.
doi: 10.1007/s00209-017-1934-8. |
[17] |
R. Killip, J. Murphy, M. Visan and J. Zheng,
The focusing cubic NLS with inverse-square potential in three space dimensions, Differ. Integral Equ., 30 (2017), 161-206.
|
[18] |
R. Killip, C. Miao, M. Visan, J. Zhang and J. Zheng, The energy-critical NLS with inverse-square potential, Discrete Contin. Dyn. Syst., 37 (2017), 3831-3866.
doi: 10.3934/dcds.2017162. |
[19] |
R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Am. J. Math., 132 (2010), 361–424.
doi: 10.1353/ajm.0.0107. |
[20] |
R. Killip and M. Visan, Nonlinear Schrö dinger equations at critical regularity, Evol. Equ., (2009), 89–100.
doi: 10.1007/s00208-013-0960-z. |
[21] |
R. Killip, M. Visan, and X. Zhang, Quintic NLS in the exterior of a strictly convex obstacle, Am. J. Math., 138 (2016), 1193-1346.
doi: 10.1353/ajm.2016.0039. |
[22] |
R. Killip, M. Visan and X. Zhang, Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schrödinger equation on $\mathbb{R}^{2}$. arXiv: 1606.07738. Google Scholar |
[23] |
D. Li and X. Zhang, Dynamics for the energy critical nonlinear Schrödinger equation in high dimensions, J. Funct. Anal., 256 (2009), 1928-1961.
doi: 10.1016/j.jfa.2008.12.007. |
[24] |
D. Li and X. Zhang, Dynamics for the energy critical nonlinear Wave equation in high dimensions, Trans. AMS., 363 (2011), 1137-1160.
doi: 10.1090/S0002-9947-2010-04999-2. |
[25] |
J. Lu, C. Miao and J. Murphy,
Scattering in $H^{1}$ for the intercritical NLS with an inverse square potential, J. Differ. Equ., 264 (2018), 3174-3211.
doi: 10.1016/j.jde.2017.11.015. |
[26] |
F. Merle and L. Vega,
Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D, International Mathematics Research Notices, 1998 (1998), 399-425.
doi: 10.1155/S1073792898000270. |
[27] |
C. Miao, J. Murphy and J. Zheng,
The energy-critical nonlinear wave equation with an inverse-square potential, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 37 (2020), 417-456.
doi: 10.1016/j.anihpc.2019.09.004. |
[28] |
F. Planchon, J. Stalker and A. S. Tahvildar-Zadeh,
Dispersive estimates for wave equation with the inverse-square potential, Discrete Contin. Dyn. Syst. Ser. A, 9 (2003), 1387-1400.
doi: 10.3934/dcds.2003.9.1387. |
[29] |
E. Ryckman and M. Visan,
Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{1+4}$, Am. J. Math., 129 (2007), 1-60.
doi: 10.1353/ajm.2007.0004. |
[30] |
G. Talenti,
Best constant in Sobolev inequality, Ann. Mat. Pura. Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013. |
[31] |
T. Tao,
Global well-posedness and scattering for higher-dimensional energy-critical non-linear Schrödinger equation for radial data, New York J. Math., 11 (2005), 57-80.
|
[32] |
T. Tao and M. Visan,
Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differ. Equ., 118 (2005), 1-28.
|
[33] |
J. L. Vazquez and E. Zuazua,
The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.
doi: 10.1006/jfan.1999.3556. |
[34] |
M. Visan,
The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.
doi: 10.1215/S0012-7094-07-13825-0. |
[35] |
K. Yang, Dynamics of The Energy Critical Nonlinear Schrödinger Equation with Inverse Square Potential, PhD thesis, University of Iowa, 2017. |
[36] |
K. Yang,
The focusing NLS on exterior domains in three dimensions, Commun. Pure. Appl. Anal., 16 (2017), 2269-2297.
doi: 10.3934/cpaa.2017112. |
[37] |
K. Yang,
The symplectic non-squeezing properties of mass subcritical Hartree equations, J. Math. Anal. Appl., 449 (2017), 427-455.
doi: 10.1016/j.jmaa.2016.11.079. |
[38] |
K. Yang, Scattering of the energy-critical NLS with inverse square potential, J. Math. Anal. Appl., 487 (2020), 124006.
doi: 10.1016/j.jmaa.2020.124006. |
[39] |
J. Zhang and J. Zheng, Strichartz estimates and wave equation in a conic singular space, Math. Ann., 376 (2020), 525-581.
doi: 10.1007/s00208-019-01892-7. |
[40] |
J. Zhang and J. Zheng,
Scattering theory for nonlinear Schrödinger with inverse-square potential, J. Funct. Anal., 267 (2014), 2907-2932.
doi: 10.1016/j.jfa.2014.08.012. |
[41] |
J. Zheng, Focusing NLS with inverse square potential, J. Math. Phys., 59 (2018), 111502, 14pp.
doi: 10.1063/1.5054167. |
[1] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[2] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[3] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[4] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[5] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[6] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[7] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[8] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[9] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[10] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[11] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[12] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[13] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[14] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[15] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[16] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[17] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[18] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[19] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[20] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]