-
Previous Article
A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle
- CPAA Home
- This Issue
-
Next Article
Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation
Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential
Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan |
We study uniqueness and nondegeneracy of ground states for stationary nonlinear Schrödinger equations with a focusing power-type nonlinearity and an attractive inverse-power potential. We refine the results of Shioji and Watanabe (2016) and apply it to prove the uniqueness and nondegeneracy of ground states for our equations. We also discuss the orbital instability of ground state-standing waves.
References:
[1] |
H. Berestycki and P. L. Lions,
Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[2] |
J. Byeon and Y. Oshita,
Uniqueness of standing waves for nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 975-987.
doi: 10.1017/S0308210507000236. |
[3] |
T. Cazenave, An introduction to nonlinear Schrödinger equations, vol. 22 of Textos de Métodos Matemáticos, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1989. Google Scholar |
[4] |
T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003
doi: 10.1090/cln/010. |
[5] |
S. M. Chang, S. Gustafson, K. Nakanishi and T. P. Tsai,
Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., 39 (2007/08), 1070-1111.
doi: 10.1137/050648389. |
[6] |
C. V. Coffman,
Uniqueness of the ground state solution for $\Delta u-u+u^{3} = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81-95.
doi: 10.1007/BF00250684. |
[7] |
A. Comech and D. Pelinovsky,
Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math., 56 (2003), 1565-1607.
doi: 10.1002/cpa.10104. |
[8] |
V. D. Dinh, On nonlinear Schrödinger equations with attractive inverse-power potentials, arXiv: 1903.04636. Google Scholar |
[9] |
N. Fukaya and M. Ohta,
Strong instability of standing waves for nonlinear Schrödinger equations with attractive inverse power potential, Osaka J. Math., 56 (2019), 713-726.
|
[10] |
R. Fukuizumi and M. Ohta,
Instability of standing waves for nonlinear Schrödinger equations with potentials, Differ. Integral Equ., 16 (2003), 691-706.
|
[11] |
R. Fukuizumi and M. Ohta,
Stability of standing waves for nonlinear Schrödinger equations with potentials, Differ. Integral Equ., 16 (2003), 111-128.
|
[12] |
M. Grillakis, J. Shatah and W. Strauss,
Stability theory of solitary waves in the presence of symmetry. Ⅰ, J. Funct. Anal., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[13] |
M. Grillakis, J. Shatah and W. Strauss,
Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.
doi: 10.1016/0022-1236(90)90016-E. |
[14] |
Y. Kabeya and K. Tanaka,
Uniqueness of positive radial solutions of semilinear elliptic equations in ${\bf R}^N$ and Séré's non-degeneracy condition, Commun. Partial Differ. Equ., 24 (1999), 563-598.
doi: 10.1080/03605309908821434. |
[15] |
M. K. Kwong,
Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.
doi: 10.1007/BF00251502. |
[16] |
X. Li and J. Zhao,
Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential, Comput. Math. Appl., 79 (2020), 303-316.
doi: 10.1016/j.camwa.2019.06.030. |
[17] |
E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014. |
[18] |
M. Maeda,
Stability of bound states of Hamiltonian PDEs in the degenerate cases, J. Funct. Anal., 263 (2012), 511-528.
doi: 10.1016/j.jfa.2012.04.006. |
[19] |
K. McLeod and J. Serrin,
Uniqueness of positive radial solutions of $\Delta u+f(u) = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 99 (1987), 115-145.
doi: 10.1007/BF00275874. |
[20] |
W.-M. Ni and I. Takagi,
Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[21] |
M. Ohta,
Instability of bound states for abstract nonlinear Schrödinger equations, J. Funct. Anal., 261 (2011), 90-110.
doi: 10.1016/j.jfa.2011.03.010. |
[22] |
L. A. Peletier and J. Serrin,
Uniqueness of positive solutions of semilinear equations in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 81 (1983), 181-197.
doi: 10.1007/BF00250651. |
[23] |
J. Shatah,
Stable standing waves of nonlinear Klein-Gordon equations, Commun. Math. Phys., 91 (1983), 313-327.
|
[24] |
J. Shatah and W. Strauss,
Instability of nonlinear bound states, Commun. Math. Phys., 100 (1985), 173-190.
|
[25] |
N. Shioji and K. Watanabe,
A generalized Pohožaev identity and uniqueness of positive radial solutions of $\Delta u+g(r)u+h(r)u^p = 0$, J. Differ. Equ., 255 (2013), 4448-4475.
doi: 10.1016/j.jde.2013.08.017. |
[26] |
N. Shioji and K. Watanabe, Uniqueness and nondegeneracy of positive radial solutions of $ {\rm div} (\rho\nabla u)+\rho(-gu+hu^p) = 0$, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 32, 42.
doi: 10.1007/s00526-016-0970-2. |
[27] |
M. I. Weinstein,
Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.
doi: 10.1137/0516034. |
[28] |
M. I. Weinstein,
Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., 39 (1986), 51-67.
doi: 10.1002/cpa.3160390103. |
[29] |
E. Yanagida,
Uniqueness of positive radial solutions of $\Delta u+g(r)u+h(r)u^p=0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 115 (1991), 257-274.
doi: 10.1007/BF00380770. |
show all references
References:
[1] |
H. Berestycki and P. L. Lions,
Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[2] |
J. Byeon and Y. Oshita,
Uniqueness of standing waves for nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 975-987.
doi: 10.1017/S0308210507000236. |
[3] |
T. Cazenave, An introduction to nonlinear Schrödinger equations, vol. 22 of Textos de Métodos Matemáticos, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1989. Google Scholar |
[4] |
T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003
doi: 10.1090/cln/010. |
[5] |
S. M. Chang, S. Gustafson, K. Nakanishi and T. P. Tsai,
Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., 39 (2007/08), 1070-1111.
doi: 10.1137/050648389. |
[6] |
C. V. Coffman,
Uniqueness of the ground state solution for $\Delta u-u+u^{3} = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81-95.
doi: 10.1007/BF00250684. |
[7] |
A. Comech and D. Pelinovsky,
Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math., 56 (2003), 1565-1607.
doi: 10.1002/cpa.10104. |
[8] |
V. D. Dinh, On nonlinear Schrödinger equations with attractive inverse-power potentials, arXiv: 1903.04636. Google Scholar |
[9] |
N. Fukaya and M. Ohta,
Strong instability of standing waves for nonlinear Schrödinger equations with attractive inverse power potential, Osaka J. Math., 56 (2019), 713-726.
|
[10] |
R. Fukuizumi and M. Ohta,
Instability of standing waves for nonlinear Schrödinger equations with potentials, Differ. Integral Equ., 16 (2003), 691-706.
|
[11] |
R. Fukuizumi and M. Ohta,
Stability of standing waves for nonlinear Schrödinger equations with potentials, Differ. Integral Equ., 16 (2003), 111-128.
|
[12] |
M. Grillakis, J. Shatah and W. Strauss,
Stability theory of solitary waves in the presence of symmetry. Ⅰ, J. Funct. Anal., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[13] |
M. Grillakis, J. Shatah and W. Strauss,
Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.
doi: 10.1016/0022-1236(90)90016-E. |
[14] |
Y. Kabeya and K. Tanaka,
Uniqueness of positive radial solutions of semilinear elliptic equations in ${\bf R}^N$ and Séré's non-degeneracy condition, Commun. Partial Differ. Equ., 24 (1999), 563-598.
doi: 10.1080/03605309908821434. |
[15] |
M. K. Kwong,
Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.
doi: 10.1007/BF00251502. |
[16] |
X. Li and J. Zhao,
Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential, Comput. Math. Appl., 79 (2020), 303-316.
doi: 10.1016/j.camwa.2019.06.030. |
[17] |
E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014. |
[18] |
M. Maeda,
Stability of bound states of Hamiltonian PDEs in the degenerate cases, J. Funct. Anal., 263 (2012), 511-528.
doi: 10.1016/j.jfa.2012.04.006. |
[19] |
K. McLeod and J. Serrin,
Uniqueness of positive radial solutions of $\Delta u+f(u) = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 99 (1987), 115-145.
doi: 10.1007/BF00275874. |
[20] |
W.-M. Ni and I. Takagi,
Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[21] |
M. Ohta,
Instability of bound states for abstract nonlinear Schrödinger equations, J. Funct. Anal., 261 (2011), 90-110.
doi: 10.1016/j.jfa.2011.03.010. |
[22] |
L. A. Peletier and J. Serrin,
Uniqueness of positive solutions of semilinear equations in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 81 (1983), 181-197.
doi: 10.1007/BF00250651. |
[23] |
J. Shatah,
Stable standing waves of nonlinear Klein-Gordon equations, Commun. Math. Phys., 91 (1983), 313-327.
|
[24] |
J. Shatah and W. Strauss,
Instability of nonlinear bound states, Commun. Math. Phys., 100 (1985), 173-190.
|
[25] |
N. Shioji and K. Watanabe,
A generalized Pohožaev identity and uniqueness of positive radial solutions of $\Delta u+g(r)u+h(r)u^p = 0$, J. Differ. Equ., 255 (2013), 4448-4475.
doi: 10.1016/j.jde.2013.08.017. |
[26] |
N. Shioji and K. Watanabe, Uniqueness and nondegeneracy of positive radial solutions of $ {\rm div} (\rho\nabla u)+\rho(-gu+hu^p) = 0$, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 32, 42.
doi: 10.1007/s00526-016-0970-2. |
[27] |
M. I. Weinstein,
Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.
doi: 10.1137/0516034. |
[28] |
M. I. Weinstein,
Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., 39 (1986), 51-67.
doi: 10.1002/cpa.3160390103. |
[29] |
E. Yanagida,
Uniqueness of positive radial solutions of $\Delta u+g(r)u+h(r)u^p=0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 115 (1991), 257-274.
doi: 10.1007/BF00380770. |
[1] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[2] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[3] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[4] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[5] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[6] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[7] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[8] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[9] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[10] |
Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039 |
[11] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376 |
[12] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[13] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[14] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[15] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[16] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[17] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[18] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[19] |
Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 |
[20] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]