We are concerned with the existence of blowing-up solutions to the following boundary value problem
$ -\Delta u = \lambda V(x) e^u-4\pi N {\mathit{\boldsymbol{\delta}}}_0\;\hbox{ in } \Omega, \quad u = 0 \;\hbox{ on }\partial \Omega, $
where $ \Omega $ is a smooth and bounded domain in $ \mathbb{R}^2 $ such that $ 0\in\Omega $, $ V $ is a positive smooth potential, $ N $ is a positive integer and $ \lambda>0 $ is a small parameter. Here $ {\mathit{\boldsymbol{\delta}}}_0 $ defines the Dirac measure with pole at $ 0 $. We assume that $ \Omega $ is $ (N+1) $-symmetric and we find conditions on the potential $ V $ and the domain $ \Omega $ under which there exists a solution blowing up at $ N+1 $ points located at the vertices of a regular polygon with center $ 0 $.
Citation: |
[1] |
S. Baraket and F. Pacard, Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differ. Equ., 6 (1998), 1-38.
doi: 10.1007/s005260050080.![]() ![]() ![]() |
[2] |
D. Bartolucci, C. C. Chen, C. S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data, Commun. Partial Differ. Equ., 29 (2004), 1241-1265.
doi: 10.1081/PDE-200033739.![]() ![]() ![]() |
[3] |
D. Bartolucci and G. Tarantello, Liouville type equations with singular data and their application to periodic multivortices for the electroweak theory, Commun. Math. Phys., 229 (2002), 3-47.
doi: 10.1007/s002200200664.![]() ![]() ![]() |
[4] |
T. Bartsch, A. Pistoia and T. Weth, $N$-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the $\sinh$-Poisson and the Lane-Emden-Fowler equations, Commun. Math. Phys., 297 (2010), 653-686.
doi: 10.1007/s00220-010-1053-4.![]() ![]() ![]() |
[5] |
H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V (x)e^u$ in two dimensions, Commun. Partial Differ. Equ., 16 (1991), 1223-1253.
doi: 10.1080/03605309108820797.![]() ![]() ![]() |
[6] |
X. Chen, Remarks on the existence of branch bubbles on the blowup analysis of equation $-\Delta u = e^2u$ in dimension two, Commun. Anal. Geom., 7 (1999), 295-302.
doi: 10.4310/CAG.1999.v7.n2.a4.![]() ![]() ![]() |
[7] |
C. C. Chen and C. C. Lin, Mean field equation of Liouville type with singular data: topological degree, Commun. Pure Appl. Math., 68 (2015), 887-947.
doi: 10.1002/cpa.21532.![]() ![]() ![]() |
[8] |
C. C. Chen and C. C. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., 55 (2002), 728-771.
doi: 10.1002/cpa.3014.![]() ![]() ![]() |
[9] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-623.
doi: 10.1215/S0012-7094-91-06325-8.![]() ![]() ![]() |
[10] |
T. D'Aprile, Blow-up phenomena for the Liouville equation with a singular source of integer multiplicity, J. Differ. Equ., 266 (2019), 7379-7415.
doi: 10.1016/j.jde.2018.12.005.![]() ![]() ![]() |
[11] |
T. D'Aprile, Multiple blow-up solutions for the Liouville equation with singular data, Commun. Partial Differ. Equ., 38 (2013), 1409-1436.
doi: 10.1080/03605302.2013.799487.![]() ![]() ![]() |
[12] |
T. D'Aprile and J. Wei, Bubbling solutions for the Liouville equation with singular sources: non-simple blow-up, J. Funct. Anal., 279 (2020), Art. 108605.
doi: 10.1016/j.jfa.2020.108605.![]() ![]() ![]() |
[13] |
M. Del Pino, P. Esposito and M. Musso, Nondegeneracy of entire solutions of a singular Liouville equation, Proc. Am. Math. Soc., 140 (2012), 581-588.
doi: 10.1090/S0002-9939-2011-11134-1.![]() ![]() ![]() |
[14] |
M. Del Pino, P. Esposito and M. Musso, Two dimensional Euler flows with concentrated vorticities, Trans. Am. Math. Soc., 362 (2010), 6381-6395.
doi: 10.1090/S0002-9947-2010-04983-9.![]() ![]() ![]() |
[15] |
M. Del Pino, M. Kowalczyk and M. Musso, Singular limits in Liouville-type equation, Calc. Var. Partial Differ. Equ., 24 (2005), 47-81.
doi: 10.1007/s00526-004-0314-5.![]() ![]() ![]() |
[16] |
P. Esposito, Blow up solutions for a Liouville equation with singular data, SIAM J. Math. Anal., 36 (2005), 1310-1345.
doi: 10.1137/S0036141003430548.![]() ![]() ![]() |
[17] |
P. Esposito, M. Grossi and A. Pistoia, On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 227-257.
doi: 10.1016/j.anihpc.2004.12.001.![]() ![]() ![]() |
[18] |
P. Esposito, M. Musso and A. Pistoia, On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity, Proc. Lond. Math. Soc., 94 (2007), 497-519.
doi: 10.1112/plms/pdl020.![]() ![]() ![]() |
[19] |
P. Esposito, M. Musso and A. Pistoia, Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differ. Equ., 227 (2006), 29-68.
doi: 10.1016/j.jde.2006.01.023.![]() ![]() ![]() |
[20] |
P. Esposito, A. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in $ \mathbb{R}^2$, J. Anal. Math., 100 (2006), 249-280.
doi: 10.1007/BF02916763.![]() ![]() ![]() |
[21] |
M. Grossi and A. Pistoia, Multiple blow-up phenomena for the $\sinh$-Poisson equation, Arch. Ration. Mech. Anal., 209 (2013), 287-320.
doi: 10.1007/s00205-013-0625-9.![]() ![]() ![]() |
[22] |
T. J. Kuo and C. S. Lin, Estimates of the mean field equations with integer singular sources: non-simple blowup, J. Differ. Geom., 103 (2016), 377-424.
![]() ![]() |
[23] |
Y. Y. Li, On a singularly perturbed elliptic equation, Adv. Differ. Equ., 2 (1997), 955-980.
![]() ![]() |
[24] |
Y. Y. Li and I. Shafrir, Blow-up analysis for solutions of $-\Delta u = V e^u$ in dimension two, Indiana Univ. Math. J., 43 (1994), 1255-1270.
doi: 10.1512/iumj.1994.43.43054.![]() ![]() ![]() |
[25] |
L. Ma and J. Wei, Convergence for a Liouville equation, Comment. Math. Helv., 76 (2001), 506-514.
doi: 10.1007/PL00013216.![]() ![]() ![]() |
[26] |
C. S. Lin and C. L. Wang, Elliptic functions, Green functions and the mean field equation on tori, Ann. of Math., 172 (2010), 911-954.
doi: 10.4007/annals.2010.172.911.![]() ![]() ![]() |
[27] |
C. S. Lin and S. Yan, Bubbling solutions for relativistic abelian Chern-Simons model on a torus, Commun. Math. Phys., 297 (2010), 733-758.
doi: 10.1007/s00220-010-1056-1.![]() ![]() ![]() |
[28] |
J. Moser, A sharp form of an inequality by N.Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.
doi: 10.1512/iumj.1971.20.20101.![]() ![]() ![]() |
[29] |
K. Nagasaki and T. Suzuki, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal., 3 (1990), 173-188.
![]() ![]() |
[30] |
J. Prajapat and G. Tarantello., On a class of elliptic problem in $ \mathbb{R}^2$: Symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 967-985.
doi: 10.1017/S0308210500001219.![]() ![]() ![]() |
[31] |
T. Suzuki., Two-dimensional Emden-Fowler equation with exponential nonlinearity, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), 493-512. Progr. Nonlinear Differential Equations Appl., 7, Birkhäuser Boston, Boston, MA, 1992.
![]() ![]() |
[32] |
G. Tarantello, Analytical Aspects of Liouville-Type Equations with Singular Sources, North-Holland, Amsterdam, 2004.
doi: 10.1016/S1874-5733(04)80009-3.![]() ![]() ![]() |
[33] |
G. Tarantello, A quantization property for blow up solutions of singular Liouville-type equations, J. Funct. Anal., 219 (2005), 368-399.
doi: 10.1016/j.jfa.2004.07.006.![]() ![]() ![]() |
[34] |
G. Tarantello, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston Inc., Boston, MA, 2008.
doi: 10.1007/978-0-8176-4608-0.![]() ![]() ![]() |
[35] |
N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.
doi: 10.1512/iumj.1968.17.17028.![]() ![]() ![]() |
[36] |
J. Wei, D. Ye and F. Zhou, Bubbling solutions for an anisotropic Emden-Fowler equation, Calc. Var. Partial Differ. Equ., 28 (2007), 217-247.
doi: 10.1007/s00526-006-0044-y.![]() ![]() ![]() |
[37] |
J. Wei and L. Zhang, Estimates for Liouville equation with quantized singularities, arXiv: 1905.04123.
![]() |
[38] |
V. H. Weston, On the asymptotic solution of a partial differential equation with an exponential nonlinearity, SIAM J. Math. Anal., 9 (1978), 1030-1053.
doi: 10.1137/0509083.![]() ![]() ![]() |
[39] |
Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-6548-9.![]() ![]() ![]() |