January  2021, 20(1): 215-242. doi: 10.3934/cpaa.2020264

Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles

Brown University, Department of Mathematics, Box 1917,151 Thayer St. Providence, RI 02912, USA

* Corresponding author

Received  April 2020 Revised  August 2020 Published  November 2020

Fund Project: The first author was supported in part by NSF grants DMS-1200455, DMS-1500106. The second author was supported in part by NSF grant DMS-1200455 (PI Justin Holmer)

We consider the 1D nonlinear Schrödinger equation (NLS) with focusing point nonlinearity,
$ \begin{equation} i\partial_t\psi + \partial_x^2\psi + \delta|\psi|^{p-1}\psi = 0, \;\;\;\;\;\;(0.1)\end{equation} $
where
$ {\delta} = {\delta}(x) $
is the delta function supported at the origin. In the
$ L^2 $
supercritical setting
$ p>3 $
, we construct self-similar blow-up solutions belonging to the energy space
$ L_x^\infty \cap \dot H_x^1 $
. This is reduced to finding outgoing solutions of a certain stationary profile equation. All outgoing solutions to the profile equation are obtained by using parabolic cylinder functions (Weber functions) and solving the jump condition at
$ x = 0 $
imposed by the
$ \delta $
term in (0.1). This jump condition is an algebraic condition involving gamma functions, and existence and uniqueness of solutions is obtained using the intermediate value theorem and formulae for the digamma function. We also compute the form of these outgoing solutions in the slightly supercritical case
$ 0<p-3 \ll 1 $
using the log Binet formula for the gamma function and steepest descent method in the integral formulae for the parabolic cylinder functions.
Citation: Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264
References:
[1]

R. AdamiG. Dell'AntonioR. Figari and A. Teta, Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 121-137.  doi: 10.1016/S0294-1449(03)00035-0.  Google Scholar

[2]

Carl M. Bender and Steven A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3069-2.  Google Scholar

[3]

Chris J. BuddShaohua Chen and Robert D. Russell, New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations, J. Comput. Phys., 152 (1999), 756-789.  doi: 10.1006/jcph.1999.6262.  Google Scholar

[4]

Claudio CacciapuotiDomenico FincoDiego Noja and Alessandro Teta, The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit, Lett. Math. Phys., 104 (2014), 1557-1570.  doi: 10.1007/s11005-014-0725-y.  Google Scholar

[5]

S. DyachenkoA. C. NewellA. Pushkarev and V. E. Zakharov, Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Phys. D, 57 (1992), 96-160.  doi: 10.1016/0167-2789(92)90090-A.  Google Scholar

[6]

Gadi Fibich, The Nonlinear Schrödinger Equation, Springer, Cham, 2015. doi: 10.1007/978-3-319-12748-4.  Google Scholar

[7]

G. M. Fraǐman, Asymptotic stability of manifold of self-similar solutions in self-focusing, Zh. Èksper. Teoret. Fiz., 88 (1985), 390-400.   Google Scholar

[8]

Justin Holmer and Chang Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity I: Basic theory, J. Math. Anal. Appl., 483 (2020), 20 pp. doi: 10.1016/j.jmaa.2019.123522.  Google Scholar

[9]

Justin Holmer and Chang Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity III: $L^2$-critical log log blowup, in preparation. Google Scholar

[10]

Russell Johnson and Xing Bin Pan, On an elliptic equation related to the blow-up phenomenon in the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 763-782.  doi: 10.1017/S030821050003095X.  Google Scholar

[11]

Nancy Kopell and Michael Landman, Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometrical analysis, SIAM J. Appl. Math., 55 (1995), 1297-1323.  doi: 10.1137/S0036139994262386.  Google Scholar

[12]

M. J. LandmanG. C. PapanicolaouC. Sulem and P. L. Sulem, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension, Phys. Rev. A, 38 (1988), 3837-3843.  doi: 10.1103/PhysRevA.38.3837.  Google Scholar

[13]

F. Merle and P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal., 13 (2003), 591-642.  doi: 10.1007/s00039-003-0424-9.  Google Scholar

[14]

Frank Merle and Pierre Raphael, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[15]

Frank Merle and Pierre Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[16]

Frank Merle and Pierre Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Commun. Math. Phys., 253 (2005), 675-704.  doi: 10.1007/s00220-004-1198-0.  Google Scholar

[17]

Frank Merle and Pierre Raphael, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Am. Math. Soc., 19 (2006), 37-90.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[18]

Frank MerlePierre Raphaël and Jeremie Szeftel, Stable self-similar blow-up dynamics for slightly $L^2$ super-critical NLS equations, Geom. Funct. Anal., 20 (2010), 1028-1071.  doi: 10.1007/s00039-010-0081-8.  Google Scholar

[19]

Diego Noja and An drea Posilicano, Wave equations with concentrated nonlinearities, J. Phys. A., 38 (2005), 5011-5022.  doi: 10.1088/0305-4470/38/22/022.  Google Scholar

[20]

Galina Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, 2 (2001), 605-673.  doi: 10.1007/PL00001048.  Google Scholar

[21]

Pierre Raphael, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577-609.  doi: 10.1007/s00208-004-0596-0.  Google Scholar

[22]

S. Yu. Slavyanov, Asymptotic Solutions of The One-dimensional Schrödinger Equation, American Mathematical Society, Providence, RI, 1996. doi: 10.1090/mmono/151.  Google Scholar

[23]

C. Sulem and P. L. Sulem, Focusing nonlinear Schr${\rm{\ddot d}}$inger equation and wave-packet collapse, Nonlinear Anal., 30 (1997), 833-844.  doi: 10.1016/S0362-546X(96)00168-X.  Google Scholar

[24]

Catherine Sulem and Pierre-Louis Sulem, The Nonlinear Schrödinger Equation, Springer-Verlag, New York, 1999.  Google Scholar

[25] Elias M. Stein and Rami Shakarchi, Complex Analysis, Princeton University Press, Princeton, NJ, 2003.   Google Scholar

show all references

References:
[1]

R. AdamiG. Dell'AntonioR. Figari and A. Teta, Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 121-137.  doi: 10.1016/S0294-1449(03)00035-0.  Google Scholar

[2]

Carl M. Bender and Steven A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3069-2.  Google Scholar

[3]

Chris J. BuddShaohua Chen and Robert D. Russell, New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations, J. Comput. Phys., 152 (1999), 756-789.  doi: 10.1006/jcph.1999.6262.  Google Scholar

[4]

Claudio CacciapuotiDomenico FincoDiego Noja and Alessandro Teta, The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit, Lett. Math. Phys., 104 (2014), 1557-1570.  doi: 10.1007/s11005-014-0725-y.  Google Scholar

[5]

S. DyachenkoA. C. NewellA. Pushkarev and V. E. Zakharov, Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Phys. D, 57 (1992), 96-160.  doi: 10.1016/0167-2789(92)90090-A.  Google Scholar

[6]

Gadi Fibich, The Nonlinear Schrödinger Equation, Springer, Cham, 2015. doi: 10.1007/978-3-319-12748-4.  Google Scholar

[7]

G. M. Fraǐman, Asymptotic stability of manifold of self-similar solutions in self-focusing, Zh. Èksper. Teoret. Fiz., 88 (1985), 390-400.   Google Scholar

[8]

Justin Holmer and Chang Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity I: Basic theory, J. Math. Anal. Appl., 483 (2020), 20 pp. doi: 10.1016/j.jmaa.2019.123522.  Google Scholar

[9]

Justin Holmer and Chang Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity III: $L^2$-critical log log blowup, in preparation. Google Scholar

[10]

Russell Johnson and Xing Bin Pan, On an elliptic equation related to the blow-up phenomenon in the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 763-782.  doi: 10.1017/S030821050003095X.  Google Scholar

[11]

Nancy Kopell and Michael Landman, Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometrical analysis, SIAM J. Appl. Math., 55 (1995), 1297-1323.  doi: 10.1137/S0036139994262386.  Google Scholar

[12]

M. J. LandmanG. C. PapanicolaouC. Sulem and P. L. Sulem, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension, Phys. Rev. A, 38 (1988), 3837-3843.  doi: 10.1103/PhysRevA.38.3837.  Google Scholar

[13]

F. Merle and P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal., 13 (2003), 591-642.  doi: 10.1007/s00039-003-0424-9.  Google Scholar

[14]

Frank Merle and Pierre Raphael, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[15]

Frank Merle and Pierre Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[16]

Frank Merle and Pierre Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Commun. Math. Phys., 253 (2005), 675-704.  doi: 10.1007/s00220-004-1198-0.  Google Scholar

[17]

Frank Merle and Pierre Raphael, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Am. Math. Soc., 19 (2006), 37-90.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[18]

Frank MerlePierre Raphaël and Jeremie Szeftel, Stable self-similar blow-up dynamics for slightly $L^2$ super-critical NLS equations, Geom. Funct. Anal., 20 (2010), 1028-1071.  doi: 10.1007/s00039-010-0081-8.  Google Scholar

[19]

Diego Noja and An drea Posilicano, Wave equations with concentrated nonlinearities, J. Phys. A., 38 (2005), 5011-5022.  doi: 10.1088/0305-4470/38/22/022.  Google Scholar

[20]

Galina Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, 2 (2001), 605-673.  doi: 10.1007/PL00001048.  Google Scholar

[21]

Pierre Raphael, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577-609.  doi: 10.1007/s00208-004-0596-0.  Google Scholar

[22]

S. Yu. Slavyanov, Asymptotic Solutions of The One-dimensional Schrödinger Equation, American Mathematical Society, Providence, RI, 1996. doi: 10.1090/mmono/151.  Google Scholar

[23]

C. Sulem and P. L. Sulem, Focusing nonlinear Schr${\rm{\ddot d}}$inger equation and wave-packet collapse, Nonlinear Anal., 30 (1997), 833-844.  doi: 10.1016/S0362-546X(96)00168-X.  Google Scholar

[24]

Catherine Sulem and Pierre-Louis Sulem, The Nonlinear Schrödinger Equation, Springer-Verlag, New York, 1999.  Google Scholar

[25] Elias M. Stein and Rami Shakarchi, Complex Analysis, Princeton University Press, Princeton, NJ, 2003.   Google Scholar
Figure 1.  (left) plot of numerical solution of $ \sigma(h) $ versus $ h^{-1} $, (right) plot of numerical solution of $ \log \sigma(h) $ versus $ h^{-1} $ in solid black, together with $ h^{-1}\to \infty $ asymptotic $ \log \sigma(h) = \log 2 -\pi h^{-1} + \log h^{-1} $, from Theorem 1.4, in dashed red, showing good agreement for $ h^{-1}>1 $
Figure 2.  Graph of $ S(\omega) = \omega\sqrt{1-\omega^2}+\arcsin \omega $
Figure 3.  The case of $ 0<\omega<1 $. There are two relevant stationary points $ \zeta_\pm = 2\omega( \omega \pm i \sqrt{1-\omega^2}) $. The contour $ i\mathbb{R}_+ $ is deformed to the contour indicated in gray. It starts by going down on the imaginary axis until it picks up a descent curve corresponding stationary point $ \zeta_- $. At $ \zeta_- $, it follows the curve of ascent which is the curve of descent corresponding to $ \zeta_+ $. At $ \zeta_+ $, it follows the descent curve upward until it reaches the imaginary axis. The contour heat plot shows the value of $ \operatorname{Re} \phi(z) $. Along the chosen contour, it reaches its maximum at $ \zeta_+ $
Figure 4.  The case $ \omega>1 $. There is one relevant stationary point $ \zeta = 2\omega (\omega - \sqrt{\omega^2-1}) $ on the real axis. The contour $ i\mathbb{R}_+ $ is deformed to the contour illustrated in purple. Starting at $ 0 $, it proceeds down the negative imaginary axis until it links up with the descent curve corresponding to the stationary point $ \zeta $. Following this curve upward to the positive imaginary axis, it then transitions to the imaginary axis itself to continue to $ +i \infty $. Along this curve, the value of $ \operatorname{Re} \phi(z) $ reaches its maximum value of $ 0 $ at $ z = \zeta $
Figure 5.  The case $ \omega = 1 $. There is one relevant stationary point $ \zeta = 2 $. It is degenerate: $ \phi'(\zeta) = 0 $ and $ \phi''(\zeta) = 0 $ but $ \phi'''(\zeta)\neq 0 $. Thus there are three descent curves and three ascent curves emanating from the stationary point, alternating and separated from each other by $ 60 $ degrees. The desired contour follows two descent arcs into the stationary point, as indicated. The value of $ \operatorname{Re} \phi(z) $ reaches its maximum value of $ 0 $ at $ z = \zeta $
[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[3]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[4]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[7]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[8]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[9]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[13]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[14]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[15]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[16]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[17]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[18]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[19]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (64)
  • HTML views (47)
  • Cited by (0)

Other articles
by authors

[Back to Top]