• Previous Article
    Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions
  • CPAA Home
  • This Issue
  • Next Article
    High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $
January  2021, 20(1): 281-300. doi: 10.3934/cpaa.2020266

Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles

1. 

School of Mathematics and Statistics, Yancheng Teachers University, Yancheng, 224002, China

2. 

School of Mathematics and Computing Science, Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin, 541004, China

3. 

School of Mathematical Sciences, Soochow University, Suzhou, 215006, China

* Corresponding author

Received  May 2020 Revised  August 2020 Published  October 2020

Fund Project: The first author is supported by Natural Science Foundation of Jiangsu Province (Grant Nos. BK20171275, BK20181058) and NSFC (Grant No. 12071410). The second author is supported by NSFC (Grant No. 11771105)

In this paper, we prove the existence and multiplicity of subharmonic bouncing motions for a Hill's type sublinear oscillator with an obstacle. Furthermore, we also consider the existence, multiplicity and dense distribution of symmetric periodic bouncing solutions when the weight function is even. Based on an appropriate coordinate transformation and the method of phase-plane analysis, we can study our main results via Poincar$ \acute{e} $ map by applying some suitable fixed point theorems.

Citation: Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266
References:
[1]

D. Bonheure and C. Fabry, Periodic motions in impact oscillators with perfectly elastic bounces, Nonlinearity, 15 (2002), 1281-1297.  doi: 10.1088/0951-7715/15/4/314.  Google Scholar

[2]

W. Ding and D. Qian, Infinitesimal periodic solutions of impact Hamiltonian systems, Science China: Math., 40 (2010), 563-574.   Google Scholar

[3]

W. DingD. QianC. Wang and Z. Wang, Existence of periodic solutions of sublinear hamiltonian systems, Acta Math. Appl. Sin., 32 (2016), 621-632.  doi: 10.1007/s10114-016-4162-y.  Google Scholar

[4]

C. Fabry and P. Habets, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities, Arch. Math., 60 (1993), 266-276.  doi: 10.1007/BF01198811.  Google Scholar

[5]

A. Fonda and A. Sfecci, Periodic bouncing solutions for nonlinear impact oscillators, Adv. Nonlinear Stud., 13 (2013), 179-189.  doi: 10.1515/ans-2013-0110.  Google Scholar

[6]

M. Jiang, Periodic solutions of second order differential equations with an obstacle, Nonlinearity, 19 (2006), 1165. doi: 10.1088/0951-7715/19/5/007.  Google Scholar

[7]

A. C. Lazer and P J. McKenna, Periodic bouncing for a forced linear spring with obstacle, Differ. Integral Equ., 5 (1992), 165-172.   Google Scholar

[8]

F. Nakajima, Even and periodic solutions of the equation $\ddot{u}+g(u) = e(t)$, J. Differ. Equ., 83 (1990), 277-299.  doi: 10.1016/0022-0396(90)90059-X.  Google Scholar

[9]

R. Ortega, Variational and Topological Methods in the Study of Nonlinear Phenomena, Springer, New York, 2002.  Google Scholar

[10]

R. Ortega, Asymmetric Oscillators and Twist Mappings, J. London Math. Soc., 53 (1996), 325-342.  doi: 10.1112/jlms/53.2.325.  Google Scholar

[11]

D. Qian and P. J. Torres, Bouncing solutions of an equation with attractive singularity, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 201-213.  doi: 10.1017/S0308210500003164.  Google Scholar

[12]

D. Qian and P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725.  doi: 10.1137/S003614100343771X.  Google Scholar

[13]

D. Qian, Large amplitude periodic bouncing for impact oscillators with damping, Proc. Am. Math. Soc., 133 (2005), 1797-1804.  doi: 10.1090/S0002-9939-04-07759-7.  Google Scholar

[14]

D. Qian and X. Sun, Invariant tori for asymptotically linear impact oscillators, Sci. China Math., 49 (2006), 669-687.  doi: 10.1007/s11425-006-0669-5.  Google Scholar

[15]

X. Sun and D. Qian, Periodic bouncing solutions for attractive singular second-order equations, Nonlinear Anal., 71 (2009), 4751-4757.  doi: 10.1016/j.na.2009.03.049.  Google Scholar

[16]

Z. WangC. Ruan and D. Qian, Existence and multiplicity of subharmonic bouncing solutions for sub-linear impact oscillators, Nonlinear Anal., 27 (2010), 17-30.   Google Scholar

[17]

Z. WangQ. Liu and D. Qian, Existence of quasi-periodic solutions and Littlewood's boundedness problem of sub-linear impact oscillators, Nonlinear Anal., 76 (2011), 5606-5617.  doi: 10.1016/j.na.2011.05.046.  Google Scholar

[18]

C. WangD. Qian and Q. Liu, Impact oscillators of Hill'S type with indefinite weight: periodic and chaotic dynamics, Discrete Contin. Dyn. Syst., 36 (2016), 2305-2328.  doi: 10.3934/dcds.2016.36.2305.  Google Scholar

show all references

References:
[1]

D. Bonheure and C. Fabry, Periodic motions in impact oscillators with perfectly elastic bounces, Nonlinearity, 15 (2002), 1281-1297.  doi: 10.1088/0951-7715/15/4/314.  Google Scholar

[2]

W. Ding and D. Qian, Infinitesimal periodic solutions of impact Hamiltonian systems, Science China: Math., 40 (2010), 563-574.   Google Scholar

[3]

W. DingD. QianC. Wang and Z. Wang, Existence of periodic solutions of sublinear hamiltonian systems, Acta Math. Appl. Sin., 32 (2016), 621-632.  doi: 10.1007/s10114-016-4162-y.  Google Scholar

[4]

C. Fabry and P. Habets, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities, Arch. Math., 60 (1993), 266-276.  doi: 10.1007/BF01198811.  Google Scholar

[5]

A. Fonda and A. Sfecci, Periodic bouncing solutions for nonlinear impact oscillators, Adv. Nonlinear Stud., 13 (2013), 179-189.  doi: 10.1515/ans-2013-0110.  Google Scholar

[6]

M. Jiang, Periodic solutions of second order differential equations with an obstacle, Nonlinearity, 19 (2006), 1165. doi: 10.1088/0951-7715/19/5/007.  Google Scholar

[7]

A. C. Lazer and P J. McKenna, Periodic bouncing for a forced linear spring with obstacle, Differ. Integral Equ., 5 (1992), 165-172.   Google Scholar

[8]

F. Nakajima, Even and periodic solutions of the equation $\ddot{u}+g(u) = e(t)$, J. Differ. Equ., 83 (1990), 277-299.  doi: 10.1016/0022-0396(90)90059-X.  Google Scholar

[9]

R. Ortega, Variational and Topological Methods in the Study of Nonlinear Phenomena, Springer, New York, 2002.  Google Scholar

[10]

R. Ortega, Asymmetric Oscillators and Twist Mappings, J. London Math. Soc., 53 (1996), 325-342.  doi: 10.1112/jlms/53.2.325.  Google Scholar

[11]

D. Qian and P. J. Torres, Bouncing solutions of an equation with attractive singularity, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 201-213.  doi: 10.1017/S0308210500003164.  Google Scholar

[12]

D. Qian and P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725.  doi: 10.1137/S003614100343771X.  Google Scholar

[13]

D. Qian, Large amplitude periodic bouncing for impact oscillators with damping, Proc. Am. Math. Soc., 133 (2005), 1797-1804.  doi: 10.1090/S0002-9939-04-07759-7.  Google Scholar

[14]

D. Qian and X. Sun, Invariant tori for asymptotically linear impact oscillators, Sci. China Math., 49 (2006), 669-687.  doi: 10.1007/s11425-006-0669-5.  Google Scholar

[15]

X. Sun and D. Qian, Periodic bouncing solutions for attractive singular second-order equations, Nonlinear Anal., 71 (2009), 4751-4757.  doi: 10.1016/j.na.2009.03.049.  Google Scholar

[16]

Z. WangC. Ruan and D. Qian, Existence and multiplicity of subharmonic bouncing solutions for sub-linear impact oscillators, Nonlinear Anal., 27 (2010), 17-30.   Google Scholar

[17]

Z. WangQ. Liu and D. Qian, Existence of quasi-periodic solutions and Littlewood's boundedness problem of sub-linear impact oscillators, Nonlinear Anal., 76 (2011), 5606-5617.  doi: 10.1016/j.na.2011.05.046.  Google Scholar

[18]

C. WangD. Qian and Q. Liu, Impact oscillators of Hill'S type with indefinite weight: periodic and chaotic dynamics, Discrete Contin. Dyn. Syst., 36 (2016), 2305-2328.  doi: 10.3934/dcds.2016.36.2305.  Google Scholar

[1]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[4]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[5]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[6]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[10]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[11]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[12]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[13]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[14]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[15]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[16]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[17]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[18]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[19]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[20]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (52)
  • HTML views (52)
  • Cited by (0)

Other articles
by authors

[Back to Top]