• Previous Article
    Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional
  • CPAA Home
  • This Issue
  • Next Article
    Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles
January  2021, 20(1): 301-317. doi: 10.3934/cpaa.2020267

Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions

Department of Mathematics and Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

Received  January 2020 Revised  September 2020 Published  November 2020

Fund Project: The author is supported by Yau Mathematical Sciences Center, Tsinghua University

In this paper we study the boundary regularity of solutions to the Dirichlet problem for a class of Monge-Ampère type equations with nonzero boundary conditions. We construct global Hölder estimates for convex solutions to the problem and emphasize that the boundary regularity essentially depends on the convexity of the domain. The proof is based on a careful study of the concept of $ (a,\eta) $ type convex domain and a family of auxiliary functions.

Citation: Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267
References:
[1]

L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Commun. Pure Appl. Math., 37 (1984), 369-402.  doi: 10.1002/cpa.3160370306.  Google Scholar

[2]

S. Y. Cheng and S. T. Yau, On the regularity of the Monge-Ampère equation $\det\frac{\partial^2u}{\partial x_i\partial x_j} = F(x, u)$, Commun. Pure Appl. Math., 30 (1977), 41-68.  doi: 10.1002/cpa.3160300104.  Google Scholar

[3]

S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces. Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar

[4]

K. S. Chou and X. J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83.  doi: 10.1016/j.aim.2005.07.004.  Google Scholar

[5]

A. Figalli, The Monge-Ampère Equation and Its Applications, European Mathematical Society (EMS), Zürich, 2017. doi: 10.4171/170.  Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 2001. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[7]

P. F. GuanN. S. Trudinger and X. J. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations, Acta Math., 182 (1999), 87-104.  doi: 10.1007/BF02392824.  Google Scholar

[8]

Y. He, Q. R. Li and X. J. Wang, Multiple solutions of the $L_p$-Minkowski problem, Calc. Var. Partial Differ. Equ., 55 (2016), 13 pp. doi: 10.1007/s00526-016-1063-y.  Google Scholar

[9]

Y. HuangF. D. Jiang and J. K. Liu, Boundary $C^{2, \alpha}$ estimates for Monge-Ampère type equations, Adv. Math., 281 (2015), 706-733.  doi: 10.1016/j.aim.2014.12.043.  Google Scholar

[10]

H. Y. Jian and Y. Li, Optimal boundary regularity for a singular Monge-Ampère equation, J. Differ. Equ., 264 (2018), 6873-6890.  doi: 10.1016/j.jde.2018.01.051.  Google Scholar

[11]

H. Y. Jian, Y. Li and X. S. Tu, On a class of degenerate and singular Monge-Ampère equations, arXiv: 1908.06396. Google Scholar

[12]

H. Y. Jian and X. J. Wang, Bernstein theorem and regularity for a class of Monge-Ampère equations, J. Differ. Geom., 93 (2013), 431-469.  doi: 10.4310/jdg/1361844941.  Google Scholar

[13]

H. Y. JianX. J. Wang and Y. W. Zhao, Global smoothness for a singular Monge-Ampère equation, J. Differ. Equ., 263 (2017), 7250-7262.  doi: 10.1016/j.jde.2017.08.004.  Google Scholar

[14]

N. Q. Le and O. Savin, Schauder estimates for degenerate Monge-Ampère equations and smoothness of the eigenfunctions, Invent. Math., 207 (2017), 389-423.  doi: 10.1007/s00222-016-0677-1.  Google Scholar

[15]

M. N. Li and Y. Li, Global regularity for a class of Monge-Ampère type equations, Sci. China Math., (2020), 16pp. doi: 10.1007/s11425-019-1691-1.  Google Scholar

[16]

C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis, Academic Press, New York, (1974), 245-272.  Google Scholar

[17]

N. S. Trudinger and J. I. E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral. Math. Soc., 28 (1983), 217-231.  doi: 10.1017/S000497270002089X.  Google Scholar

[18]

N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations, Ann. Math., 167 (2008), 993-1028.  doi: 10.4007/annals.2008.167.993.  Google Scholar

[19]

N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications, in Handbook of Geometric Analysis, International Press, Somerville, MA, (2008), 467-524.  Google Scholar

[20]

J. I. E. Urbas, Global Hölder estimates for equations of Monge-Ampère type, Invent. Math., 91 (1988), 1-29.  doi: 10.1007/BF01404910.  Google Scholar

show all references

References:
[1]

L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Commun. Pure Appl. Math., 37 (1984), 369-402.  doi: 10.1002/cpa.3160370306.  Google Scholar

[2]

S. Y. Cheng and S. T. Yau, On the regularity of the Monge-Ampère equation $\det\frac{\partial^2u}{\partial x_i\partial x_j} = F(x, u)$, Commun. Pure Appl. Math., 30 (1977), 41-68.  doi: 10.1002/cpa.3160300104.  Google Scholar

[3]

S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces. Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar

[4]

K. S. Chou and X. J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83.  doi: 10.1016/j.aim.2005.07.004.  Google Scholar

[5]

A. Figalli, The Monge-Ampère Equation and Its Applications, European Mathematical Society (EMS), Zürich, 2017. doi: 10.4171/170.  Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 2001. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[7]

P. F. GuanN. S. Trudinger and X. J. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations, Acta Math., 182 (1999), 87-104.  doi: 10.1007/BF02392824.  Google Scholar

[8]

Y. He, Q. R. Li and X. J. Wang, Multiple solutions of the $L_p$-Minkowski problem, Calc. Var. Partial Differ. Equ., 55 (2016), 13 pp. doi: 10.1007/s00526-016-1063-y.  Google Scholar

[9]

Y. HuangF. D. Jiang and J. K. Liu, Boundary $C^{2, \alpha}$ estimates for Monge-Ampère type equations, Adv. Math., 281 (2015), 706-733.  doi: 10.1016/j.aim.2014.12.043.  Google Scholar

[10]

H. Y. Jian and Y. Li, Optimal boundary regularity for a singular Monge-Ampère equation, J. Differ. Equ., 264 (2018), 6873-6890.  doi: 10.1016/j.jde.2018.01.051.  Google Scholar

[11]

H. Y. Jian, Y. Li and X. S. Tu, On a class of degenerate and singular Monge-Ampère equations, arXiv: 1908.06396. Google Scholar

[12]

H. Y. Jian and X. J. Wang, Bernstein theorem and regularity for a class of Monge-Ampère equations, J. Differ. Geom., 93 (2013), 431-469.  doi: 10.4310/jdg/1361844941.  Google Scholar

[13]

H. Y. JianX. J. Wang and Y. W. Zhao, Global smoothness for a singular Monge-Ampère equation, J. Differ. Equ., 263 (2017), 7250-7262.  doi: 10.1016/j.jde.2017.08.004.  Google Scholar

[14]

N. Q. Le and O. Savin, Schauder estimates for degenerate Monge-Ampère equations and smoothness of the eigenfunctions, Invent. Math., 207 (2017), 389-423.  doi: 10.1007/s00222-016-0677-1.  Google Scholar

[15]

M. N. Li and Y. Li, Global regularity for a class of Monge-Ampère type equations, Sci. China Math., (2020), 16pp. doi: 10.1007/s11425-019-1691-1.  Google Scholar

[16]

C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis, Academic Press, New York, (1974), 245-272.  Google Scholar

[17]

N. S. Trudinger and J. I. E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral. Math. Soc., 28 (1983), 217-231.  doi: 10.1017/S000497270002089X.  Google Scholar

[18]

N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations, Ann. Math., 167 (2008), 993-1028.  doi: 10.4007/annals.2008.167.993.  Google Scholar

[19]

N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications, in Handbook of Geometric Analysis, International Press, Somerville, MA, (2008), 467-524.  Google Scholar

[20]

J. I. E. Urbas, Global Hölder estimates for equations of Monge-Ampère type, Invent. Math., 91 (1988), 1-29.  doi: 10.1007/BF01404910.  Google Scholar

Figure 1.  The parameter $ a $
[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[3]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[4]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[5]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[6]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[7]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[8]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[9]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[10]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[11]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[12]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[13]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[14]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[15]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[16]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[17]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[18]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[19]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[20]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (147)
  • HTML views (53)
  • Cited by (0)

Other articles
by authors

[Back to Top]