• Previous Article
    Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound
  • CPAA Home
  • This Issue
  • Next Article
    Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions
January  2021, 20(1): 319-338. doi: 10.3934/cpaa.2020268

Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

2. 

School of Mathematics and Information Sciences, Guangzhou University

3. 

Hua Loo-Keng Key Laboratory of Mathematics, Institute of Mathematics, AMSS, and School of Mathematical Sciences, UCAS, Beijing 100190, China

* Corresponding author

Received  January 2020 Revised  September 2020 Published  November 2020

Fund Project: The authors are supported partially by NSFC grant (No.11731001). The author Y. Wang is supported partially by NSFC grant (No.11971400) and Guangdong Basic and Applied Basic Research Foundation Grant (No. 2020A1515011019)

We follow the idea of Wang [21] to show the existence of global weak solutions to the Cauchy problems of Landau-Lifshtiz type equations and related heat flows from a $ n $-dimensional Euclidean domain $ \Omega $ or a $ n $-dimensional closed Riemannian manifold $ M $ into a 2-dimensional unit sphere $ \mathbb{S}^{2} $. Our conclusions extend a series of related results obtained in the previous literature.

Citation: Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268
References:
[1]

F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.  doi: 10.1016/0362-546X(92)90196-L.  Google Scholar

[2]

L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, 54 (1996), 9353. Google Scholar

[3]

F. Bethuel, J. M. Coron, J. M. Ghidaglia and A. Soyeur, Nonlinear Diffusion Equations and Their Equilibrium States, 3, Gregynog, Birkhaüser, 1989. doi: 10.1007/978-1-4612-0393-3_7.  Google Scholar

[4]

G. Bonithon, Landau-Lifschitz-Gilbert equation with applied electric current, Discrete Contin. Dyn. Syst., (2007), 138-144.  Google Scholar

[5]

G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differ. Integral Equ., 14 (2001), 213-229.   Google Scholar

[6]

G. Carbou and R. Jizzini, Very regular solutions for the Landau-Lifschitz equation with electric current, Chin. Ann. Math. Ser. B, 39 (2018), 889-916.  doi: 10.1007/s11401-018-0103-7.  Google Scholar

[7]

B. Chen and Y. D. Wang, Finite-time blow up for heat flow of self-induced harmonic maps, preprint. doi: 10.1512/iumj.2015.64.5499.  Google Scholar

[8]

Y. M. Chen, The weak solutions to the Evolution problems of harmonic maps, Math. Z., 201 (1989), 69-74.  doi: 10.1007/BF01161995.  Google Scholar

[9]

Y. M. ChenM. C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into sphere, Math. Z., 215 (1994), 25-35.  doi: 10.1007/BF02571698.  Google Scholar

[10]

W. Y. Ding and Y. D. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A, 44 (2001), 1446-1464.  doi: 10.1007/BF02877074.  Google Scholar

[11]

T. L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955), 1243-1255.   Google Scholar

[12]

Z. L. Jia and Y. D. Wang, Global weak solutions to Landau-Lifshitz equations into compact Lie algebras, Front. Math. China, 14 (2019), 1163-1196.  doi: 10.1007/s11464-019-0803-7.  Google Scholar

[13]

H. KohnoG. TataraJ. Shibata and Y. Suzuki, Microscopic calculation of spin torques and forces, J. Magn. Magn. Mater., 310 (2006), 2020-2022.   Google Scholar

[14]

L. D. Landau and E. M. Lifshitz, On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Soviet., 8 (1935), 153-169.   Google Scholar

[15]

F. H. Lin, Nonlinear theory of defexts in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605.  Google Scholar

[16]

J. Simon, Compact sets in the space $L^p([0, T];B)$, Ann. Mat. Pura. Appl., 4 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[17]

P. L. SulemC. Sulem and C. Bardos, On the continuous limit for a system of classical spins, Commun. Math. Phys., 107 (1986), 431-454.   Google Scholar

[18]

J. C. Slonczewski, Current-driven excitation of magnetic multilayer, J. Magn. Magn. Mater., 159 (1996), 635-642.   Google Scholar

[19]

M. Tilioua, Current-induced magnetization dynamics. Global existence of weak solutions, J. Math. Anal. Appl., 373 (2011), 635-642.  doi: 10.1016/j.jmaa.2010.08.024.  Google Scholar

[20]

A. Visintin, On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.  doi: 10.1007/BF03167039.  Google Scholar

[21]

Y. D. Wang, Heisenberg chain systems from compact manifolds into $ \mathbb{S}^2$, J. Math. Phy., 39 (1998), 363-371.  doi: 10.1063/1.532335.  Google Scholar

[22]

K. Wehrheim, Uhlenbeck Compactness, EMS Publishing House, USA, 2004. doi: 10.4171/004.  Google Scholar

[23]

Y. ZhouB. Guo and S. B. Tan, Existence and uniqueness of smooth solution for system of ferro-magnetic chain, Sci. China Ser. A, 34 (1991), 257-266.   Google Scholar

show all references

References:
[1]

F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.  doi: 10.1016/0362-546X(92)90196-L.  Google Scholar

[2]

L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, 54 (1996), 9353. Google Scholar

[3]

F. Bethuel, J. M. Coron, J. M. Ghidaglia and A. Soyeur, Nonlinear Diffusion Equations and Their Equilibrium States, 3, Gregynog, Birkhaüser, 1989. doi: 10.1007/978-1-4612-0393-3_7.  Google Scholar

[4]

G. Bonithon, Landau-Lifschitz-Gilbert equation with applied electric current, Discrete Contin. Dyn. Syst., (2007), 138-144.  Google Scholar

[5]

G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differ. Integral Equ., 14 (2001), 213-229.   Google Scholar

[6]

G. Carbou and R. Jizzini, Very regular solutions for the Landau-Lifschitz equation with electric current, Chin. Ann. Math. Ser. B, 39 (2018), 889-916.  doi: 10.1007/s11401-018-0103-7.  Google Scholar

[7]

B. Chen and Y. D. Wang, Finite-time blow up for heat flow of self-induced harmonic maps, preprint. doi: 10.1512/iumj.2015.64.5499.  Google Scholar

[8]

Y. M. Chen, The weak solutions to the Evolution problems of harmonic maps, Math. Z., 201 (1989), 69-74.  doi: 10.1007/BF01161995.  Google Scholar

[9]

Y. M. ChenM. C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into sphere, Math. Z., 215 (1994), 25-35.  doi: 10.1007/BF02571698.  Google Scholar

[10]

W. Y. Ding and Y. D. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A, 44 (2001), 1446-1464.  doi: 10.1007/BF02877074.  Google Scholar

[11]

T. L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955), 1243-1255.   Google Scholar

[12]

Z. L. Jia and Y. D. Wang, Global weak solutions to Landau-Lifshitz equations into compact Lie algebras, Front. Math. China, 14 (2019), 1163-1196.  doi: 10.1007/s11464-019-0803-7.  Google Scholar

[13]

H. KohnoG. TataraJ. Shibata and Y. Suzuki, Microscopic calculation of spin torques and forces, J. Magn. Magn. Mater., 310 (2006), 2020-2022.   Google Scholar

[14]

L. D. Landau and E. M. Lifshitz, On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Soviet., 8 (1935), 153-169.   Google Scholar

[15]

F. H. Lin, Nonlinear theory of defexts in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605.  Google Scholar

[16]

J. Simon, Compact sets in the space $L^p([0, T];B)$, Ann. Mat. Pura. Appl., 4 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[17]

P. L. SulemC. Sulem and C. Bardos, On the continuous limit for a system of classical spins, Commun. Math. Phys., 107 (1986), 431-454.   Google Scholar

[18]

J. C. Slonczewski, Current-driven excitation of magnetic multilayer, J. Magn. Magn. Mater., 159 (1996), 635-642.   Google Scholar

[19]

M. Tilioua, Current-induced magnetization dynamics. Global existence of weak solutions, J. Math. Anal. Appl., 373 (2011), 635-642.  doi: 10.1016/j.jmaa.2010.08.024.  Google Scholar

[20]

A. Visintin, On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.  doi: 10.1007/BF03167039.  Google Scholar

[21]

Y. D. Wang, Heisenberg chain systems from compact manifolds into $ \mathbb{S}^2$, J. Math. Phy., 39 (1998), 363-371.  doi: 10.1063/1.532335.  Google Scholar

[22]

K. Wehrheim, Uhlenbeck Compactness, EMS Publishing House, USA, 2004. doi: 10.4171/004.  Google Scholar

[23]

Y. ZhouB. Guo and S. B. Tan, Existence and uniqueness of smooth solution for system of ferro-magnetic chain, Sci. China Ser. A, 34 (1991), 257-266.   Google Scholar

[1]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[2]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[9]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[10]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[11]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[12]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[13]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[14]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[17]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[18]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[19]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[20]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (29)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]