We follow the idea of Wang [
Citation: |
[1] |
F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.
doi: 10.1016/0362-546X(92)90196-L.![]() ![]() ![]() |
[2] |
L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, 54 (1996), 9353.
![]() |
[3] |
F. Bethuel, J. M. Coron, J. M. Ghidaglia and A. Soyeur, Nonlinear Diffusion Equations and Their Equilibrium States, 3, Gregynog, Birkhaüser, 1989.
doi: 10.1007/978-1-4612-0393-3_7.![]() ![]() ![]() |
[4] |
G. Bonithon, Landau-Lifschitz-Gilbert equation with applied electric current, Discrete Contin. Dyn. Syst., (2007), 138-144.
![]() ![]() |
[5] |
G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differ. Integral Equ., 14 (2001), 213-229.
![]() ![]() |
[6] |
G. Carbou and R. Jizzini, Very regular solutions for the Landau-Lifschitz equation with electric current, Chin. Ann. Math. Ser. B, 39 (2018), 889-916.
doi: 10.1007/s11401-018-0103-7.![]() ![]() ![]() |
[7] |
B. Chen and Y. D. Wang, Finite-time blow up for heat flow of self-induced harmonic maps, preprint.
doi: 10.1512/iumj.2015.64.5499.![]() ![]() ![]() |
[8] |
Y. M. Chen, The weak solutions to the Evolution problems of harmonic maps, Math. Z., 201 (1989), 69-74.
doi: 10.1007/BF01161995.![]() ![]() ![]() |
[9] |
Y. M. Chen, M. C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into sphere, Math. Z., 215 (1994), 25-35.
doi: 10.1007/BF02571698.![]() ![]() ![]() |
[10] |
W. Y. Ding and Y. D. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A, 44 (2001), 1446-1464.
doi: 10.1007/BF02877074.![]() ![]() ![]() |
[11] |
T. L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955), 1243-1255.
![]() |
[12] |
Z. L. Jia and Y. D. Wang, Global weak solutions to Landau-Lifshitz equations into compact Lie algebras, Front. Math. China, 14 (2019), 1163-1196.
doi: 10.1007/s11464-019-0803-7.![]() ![]() ![]() |
[13] |
H. Kohno, G. Tatara, J. Shibata and Y. Suzuki, Microscopic calculation of spin torques and forces, J. Magn. Magn. Mater., 310 (2006), 2020-2022.
![]() |
[14] |
L. D. Landau and E. M. Lifshitz, On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Soviet., 8 (1935), 153-169.
![]() |
[15] |
F. H. Lin, Nonlinear theory of defexts in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789-814.
doi: 10.1002/cpa.3160420605.![]() ![]() ![]() |
[16] |
J. Simon, Compact sets in the space $L^p([0, T];B)$, Ann. Mat. Pura. Appl., 4 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[17] |
P. L. Sulem, C. Sulem and C. Bardos, On the continuous limit for a system of classical spins, Commun. Math. Phys., 107 (1986), 431-454.
![]() ![]() |
[18] |
J. C. Slonczewski, Current-driven excitation of magnetic multilayer, J. Magn. Magn. Mater., 159 (1996), 635-642.
![]() |
[19] |
M. Tilioua, Current-induced magnetization dynamics. Global existence of weak solutions, J. Math. Anal. Appl., 373 (2011), 635-642.
doi: 10.1016/j.jmaa.2010.08.024.![]() ![]() ![]() |
[20] |
A. Visintin, On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.
doi: 10.1007/BF03167039.![]() ![]() ![]() |
[21] |
Y. D. Wang, Heisenberg chain systems from compact manifolds into $ \mathbb{S}^2$, J. Math. Phy., 39 (1998), 363-371.
doi: 10.1063/1.532335.![]() ![]() ![]() |
[22] |
K. Wehrheim, Uhlenbeck Compactness, EMS Publishing House, USA, 2004.
doi: 10.4171/004.![]() ![]() ![]() |
[23] |
Y. Zhou, B. Guo and S. B. Tan, Existence and uniqueness of smooth solution for system of ferro-magnetic chain, Sci. China Ser. A, 34 (1991), 257-266.
![]() ![]() |