• Previous Article
    Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound
  • CPAA Home
  • This Issue
  • Next Article
    Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions
January  2021, 20(1): 319-338. doi: 10.3934/cpaa.2020268

Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

2. 

School of Mathematics and Information Sciences, Guangzhou University

3. 

Hua Loo-Keng Key Laboratory of Mathematics, Institute of Mathematics, AMSS, and School of Mathematical Sciences, UCAS, Beijing 100190, China

* Corresponding author

Received  January 2020 Revised  September 2020 Published  January 2021 Early access  November 2020

Fund Project: The authors are supported partially by NSFC grant (No.11731001). The author Y. Wang is supported partially by NSFC grant (No.11971400) and Guangdong Basic and Applied Basic Research Foundation Grant (No. 2020A1515011019)

We follow the idea of Wang [21] to show the existence of global weak solutions to the Cauchy problems of Landau-Lifshtiz type equations and related heat flows from a $ n $-dimensional Euclidean domain $ \Omega $ or a $ n $-dimensional closed Riemannian manifold $ M $ into a 2-dimensional unit sphere $ \mathbb{S}^{2} $. Our conclusions extend a series of related results obtained in the previous literature.

Citation: Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268
References:
[1]

F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.  doi: 10.1016/0362-546X(92)90196-L.  Google Scholar

[2]

L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, 54 (1996), 9353. Google Scholar

[3]

F. Bethuel, J. M. Coron, J. M. Ghidaglia and A. Soyeur, Nonlinear Diffusion Equations and Their Equilibrium States, 3, Gregynog, Birkhaüser, 1989. doi: 10.1007/978-1-4612-0393-3_7.  Google Scholar

[4]

G. Bonithon, Landau-Lifschitz-Gilbert equation with applied electric current, Discrete Contin. Dyn. Syst., (2007), 138-144.  Google Scholar

[5]

G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differ. Integral Equ., 14 (2001), 213-229.   Google Scholar

[6]

G. Carbou and R. Jizzini, Very regular solutions for the Landau-Lifschitz equation with electric current, Chin. Ann. Math. Ser. B, 39 (2018), 889-916.  doi: 10.1007/s11401-018-0103-7.  Google Scholar

[7]

B. Chen and Y. D. Wang, Finite-time blow up for heat flow of self-induced harmonic maps, preprint. doi: 10.1512/iumj.2015.64.5499.  Google Scholar

[8]

Y. M. Chen, The weak solutions to the Evolution problems of harmonic maps, Math. Z., 201 (1989), 69-74.  doi: 10.1007/BF01161995.  Google Scholar

[9]

Y. M. ChenM. C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into sphere, Math. Z., 215 (1994), 25-35.  doi: 10.1007/BF02571698.  Google Scholar

[10]

W. Y. Ding and Y. D. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A, 44 (2001), 1446-1464.  doi: 10.1007/BF02877074.  Google Scholar

[11]

T. L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955), 1243-1255.   Google Scholar

[12]

Z. L. Jia and Y. D. Wang, Global weak solutions to Landau-Lifshitz equations into compact Lie algebras, Front. Math. China, 14 (2019), 1163-1196.  doi: 10.1007/s11464-019-0803-7.  Google Scholar

[13]

H. KohnoG. TataraJ. Shibata and Y. Suzuki, Microscopic calculation of spin torques and forces, J. Magn. Magn. Mater., 310 (2006), 2020-2022.   Google Scholar

[14]

L. D. Landau and E. M. Lifshitz, On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Soviet., 8 (1935), 153-169.   Google Scholar

[15]

F. H. Lin, Nonlinear theory of defexts in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605.  Google Scholar

[16]

J. Simon, Compact sets in the space $L^p([0, T];B)$, Ann. Mat. Pura. Appl., 4 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[17]

P. L. SulemC. Sulem and C. Bardos, On the continuous limit for a system of classical spins, Commun. Math. Phys., 107 (1986), 431-454.   Google Scholar

[18]

J. C. Slonczewski, Current-driven excitation of magnetic multilayer, J. Magn. Magn. Mater., 159 (1996), 635-642.   Google Scholar

[19]

M. Tilioua, Current-induced magnetization dynamics. Global existence of weak solutions, J. Math. Anal. Appl., 373 (2011), 635-642.  doi: 10.1016/j.jmaa.2010.08.024.  Google Scholar

[20]

A. Visintin, On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.  doi: 10.1007/BF03167039.  Google Scholar

[21]

Y. D. Wang, Heisenberg chain systems from compact manifolds into $ \mathbb{S}^2$, J. Math. Phy., 39 (1998), 363-371.  doi: 10.1063/1.532335.  Google Scholar

[22]

K. Wehrheim, Uhlenbeck Compactness, EMS Publishing House, USA, 2004. doi: 10.4171/004.  Google Scholar

[23]

Y. ZhouB. Guo and S. B. Tan, Existence and uniqueness of smooth solution for system of ferro-magnetic chain, Sci. China Ser. A, 34 (1991), 257-266.   Google Scholar

show all references

References:
[1]

F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.  doi: 10.1016/0362-546X(92)90196-L.  Google Scholar

[2]

L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, 54 (1996), 9353. Google Scholar

[3]

F. Bethuel, J. M. Coron, J. M. Ghidaglia and A. Soyeur, Nonlinear Diffusion Equations and Their Equilibrium States, 3, Gregynog, Birkhaüser, 1989. doi: 10.1007/978-1-4612-0393-3_7.  Google Scholar

[4]

G. Bonithon, Landau-Lifschitz-Gilbert equation with applied electric current, Discrete Contin. Dyn. Syst., (2007), 138-144.  Google Scholar

[5]

G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differ. Integral Equ., 14 (2001), 213-229.   Google Scholar

[6]

G. Carbou and R. Jizzini, Very regular solutions for the Landau-Lifschitz equation with electric current, Chin. Ann. Math. Ser. B, 39 (2018), 889-916.  doi: 10.1007/s11401-018-0103-7.  Google Scholar

[7]

B. Chen and Y. D. Wang, Finite-time blow up for heat flow of self-induced harmonic maps, preprint. doi: 10.1512/iumj.2015.64.5499.  Google Scholar

[8]

Y. M. Chen, The weak solutions to the Evolution problems of harmonic maps, Math. Z., 201 (1989), 69-74.  doi: 10.1007/BF01161995.  Google Scholar

[9]

Y. M. ChenM. C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into sphere, Math. Z., 215 (1994), 25-35.  doi: 10.1007/BF02571698.  Google Scholar

[10]

W. Y. Ding and Y. D. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A, 44 (2001), 1446-1464.  doi: 10.1007/BF02877074.  Google Scholar

[11]

T. L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955), 1243-1255.   Google Scholar

[12]

Z. L. Jia and Y. D. Wang, Global weak solutions to Landau-Lifshitz equations into compact Lie algebras, Front. Math. China, 14 (2019), 1163-1196.  doi: 10.1007/s11464-019-0803-7.  Google Scholar

[13]

H. KohnoG. TataraJ. Shibata and Y. Suzuki, Microscopic calculation of spin torques and forces, J. Magn. Magn. Mater., 310 (2006), 2020-2022.   Google Scholar

[14]

L. D. Landau and E. M. Lifshitz, On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Soviet., 8 (1935), 153-169.   Google Scholar

[15]

F. H. Lin, Nonlinear theory of defexts in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605.  Google Scholar

[16]

J. Simon, Compact sets in the space $L^p([0, T];B)$, Ann. Mat. Pura. Appl., 4 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[17]

P. L. SulemC. Sulem and C. Bardos, On the continuous limit for a system of classical spins, Commun. Math. Phys., 107 (1986), 431-454.   Google Scholar

[18]

J. C. Slonczewski, Current-driven excitation of magnetic multilayer, J. Magn. Magn. Mater., 159 (1996), 635-642.   Google Scholar

[19]

M. Tilioua, Current-induced magnetization dynamics. Global existence of weak solutions, J. Math. Anal. Appl., 373 (2011), 635-642.  doi: 10.1016/j.jmaa.2010.08.024.  Google Scholar

[20]

A. Visintin, On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.  doi: 10.1007/BF03167039.  Google Scholar

[21]

Y. D. Wang, Heisenberg chain systems from compact manifolds into $ \mathbb{S}^2$, J. Math. Phy., 39 (1998), 363-371.  doi: 10.1063/1.532335.  Google Scholar

[22]

K. Wehrheim, Uhlenbeck Compactness, EMS Publishing House, USA, 2004. doi: 10.4171/004.  Google Scholar

[23]

Y. ZhouB. Guo and S. B. Tan, Existence and uniqueness of smooth solution for system of ferro-magnetic chain, Sci. China Ser. A, 34 (1991), 257-266.   Google Scholar

[1]

Zonglin Jia, Youde Wang. Global weak solutions to Landau-Lifshtiz systems with spin-polarized transport. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1903-1935. doi: 10.3934/dcds.2020099

[2]

Carlos J. Garcia-Cervera, Xiao-Ping Wang. Spin-polarized transport: Existence of weak solutions. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 87-100. doi: 10.3934/dcdsb.2007.7.87

[3]

Boling Guo, Fangfang Li. Global smooth solution for the Sipn-Polarized transport equation with Landau-Lifshitz-Bloch equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2825-2840. doi: 10.3934/dcdsb.2020034

[4]

Carlos J. García-Cervera, Xiao-Ping Wang. A note on 'Spin-polarized transport: Existence of weak solutions'. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2761-2763. doi: 10.3934/dcdsb.2015.20.2761

[5]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[6]

Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230

[7]

Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133

[8]

Xueke Pu, Boling Guo, Jingjun Zhang. Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 199-207. doi: 10.3934/dcdsb.2010.14.199

[9]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete & Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[10]

Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic & Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1

[11]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[12]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[13]

Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116

[14]

Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357

[15]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[16]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[17]

Catherine Choquet, Mohammed Moumni, Mouhcine Tilioua. Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 35-57. doi: 10.3934/dcdss.2018003

[18]

Gaël Bonithon. Landau-Lifschitz-Gilbert equation with applied eletric current. Conference Publications, 2007, 2007 (Special) : 138-144. doi: 10.3934/proc.2007.2007.138

[19]

Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034

[20]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (142)
  • HTML views (47)
  • Cited by (0)

Other articles
by authors

[Back to Top]