• Previous Article
    Isomorphism between one-dimensional and multidimensional finite difference operators
  • CPAA Home
  • This Issue
  • Next Article
    Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional
January  2021, 20(1): 339-358. doi: 10.3934/cpaa.2020269

Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound

1. 

School of Mathematics and Statistics, UNSW Sydney, NSW 2052 Australia

2. 

Department of Mathematics, Creighton Preparatory School, Omaha, NE 68114 USA

3. 

Department of Mathematics, University of Nebraska-Omaha, Omaha, NE 68182-0243 USA

* Corresponding author

Received  April 2020 Revised  August 2020 Published  November 2020

We investigate the relationship between the sign of the discrete fractional sequential difference
$ \big(\Delta_{1+a-\mu}^{\nu}\Delta_a^{\mu}f\big)(t) $
and the monotonicity of the function
$ t\mapsto f(t) $
. More precisely, we consider the special case in which this fractional difference can be negative and satisfies the lower bound
$ \begin{equation} \big(\Delta_{1+a-\mu}^{\nu}\Delta_a^{\mu}f\big)(t)\ge-\varepsilon f(a),\notag \end{equation} $
for some
$ \varepsilon>0 $
. We prove that even though the fractional difference can be negative, the monotonicity of the function
$ f $
, nonetheless, is still implied by the above inequality. This demonstrates a significant dissimilarity between the fractional and non-fractional cases. Because of the challenges of a purely analytical approach, our analysis includes numerical simulation.
Citation: Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269
References:
[1]

T. Abdeljawad and B. Abdalla, Monotonicity results for delta and nabla Caputo and Riemann fractional differences via dual identities, Filomat, 31 (2017), 3671-3683.  doi: 10.2298/fil1712671a.  Google Scholar

[2]

T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., (2017), 9 pp. doi: 10.1186/s13662-017-1126-1.  Google Scholar

[3]

G. A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Model., 51 (2010), 562-571.  doi: 10.1016/j.mcm.2009.11.006.  Google Scholar

[4]

F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165-176.   Google Scholar

[5]

F. M. Atici and P. W. Eloe, Initial value problems in discrete fractional calculus, P. Am. Math. Soc., 137 (2009), 981-989.  doi: 10.1090/S0002-9939-08-09626-3.  Google Scholar

[6]

F. M. Atici and P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Differ. Equ. Appl., 17 (2011), 445-456.  doi: 10.1080/10236190903029241.  Google Scholar

[7]

F. M. Atici and M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math., 9 (2015), 139-149.  doi: 10.2298/AADM150218007A.  Google Scholar

[8] B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, 1977.   Google Scholar
[9]

R. Dahal and C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math., 102 (2014), 293-299.  doi: 10.1007/s00013-014-0620-x.  Google Scholar

[10]

R. Dahal and C. S. Goodrich, An almost sharp monotonicity result for discrete sequential fractional delta differences, J. Differ. Equ. Appl., 23 (2017), 1190-1203.  doi: 10.1080/10236198.2017.1307351.  Google Scholar

[11]

R. Dahal and C. S. Goodrich, Mixed order monotonicity results for sequential fractional nabla differences, J. Differ. Equ. Appl., 25 (2019), 837-854.  doi: 10.1080/10236198.2018.1561883.  Google Scholar

[12]

F. DuB. JiaL. Erbe and A. Peterson, Monotonicity and convexity for nabla fractional $(q, h)$-differences, J. Differ. Equ. Appl., 22 (2016), 1224-1243.  doi: 10.1080/10236198.2016.1188089.  Google Scholar

[13]

L. Erbe, C. S. Goodrich, B. Jia and A. Peterson, Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions, Adv. Differ Equ., (2016), 31 pp. doi: 10.1186/s13662-016-0760-3.  Google Scholar

[14]

R. A. C. Ferreira, A discrete fractional Gronwall inequality, P. Am. Math. Soc., 140 (2012), 1605-1612.  doi: 10.1090/S0002-9939-2012-11533-3.  Google Scholar

[15]

C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111-124.  doi: 10.1016/j.jmaa.2011.06.022.  Google Scholar

[16]

C. S. Goodrich, A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference, Math. Inequal. Appl., 19 (2016), 769-779.  doi: 10.7153/mia-19-57.  Google Scholar

[17]

C. S. Goodrich, A sharp convexity result for sequential fractional delta differences, J. Differ. Equ. Appl., 23 (2017), 1986-2003.  doi: 10.1080/10236198.2017.1380635.  Google Scholar

[18]

C. S. Goodrich, A uniformly sharp monotonicity result for discrete fractional sequential differences, Arch. Math., 110 (2018), 145-154.  doi: 10.1007/s00013-017-1106-4.  Google Scholar

[19]

C. S. Goodrich, Sharp monotonicity results for fractional nabla sequential differences, J. Differ. Equ. Appl., 25 (2019), 801-814.  doi: 10.1080/10236198.2018.1542431.  Google Scholar

[20]

C. S. Goodrich and C. Lizama, A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity, Israel J. Math., 236 (2020), 533-589.  doi: 10.1007/s11856-020-1991-2.  Google Scholar

[21]

C. S. Goodrich and C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst., 40 (2020), 4961-4983.  doi: 10.3934/dcds.2020207.  Google Scholar

[22]

C. S. Goodrich and B. Lyons, Positivity and monotonicity results for triple sequential fractional differences via convolution, Analysis (Berlin), 40 (2020), 89-103.  doi: 10.1515/anly-2019-0050.  Google Scholar

[23]

C. S. Goodrich and M. Muellner, An analysis of the sharpness of monotonicity results via homotopy for sequential fractional operators, Appl. Math. Lett., 98 (2019), 446-452.  doi: 10.1016/j.aml.2019.07.003.  Google Scholar

[24]

C. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, New York, 2015. doi: 10.1007/978-3-319-25562-0.  Google Scholar

[25]

M. Holm, Sum and difference compositions in discrete fractional calculus, Cubo, 13 (2011), 153-184.  doi: 10.4067/s0719-06462011000300009.  Google Scholar

[26]

B. JiaL. ErbeC. S. Goodrich and A. Peterson, Monotonicity results for delta fractional differences revisited, Math. Slovaca, 67 (2017), 895-906.  doi: 10.1515/ms-2017-0018.  Google Scholar

[27]

B. JiaL. Erbe and A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math., 104 (2015), 589-597.  doi: 10.1007/s00013-015-0765-2.  Google Scholar

[28]

B. JiaL. Erbe and A. Peterson, Monotonicity and convexity for nabla fractional $q$-differences, Dynam. Systems Appl., 25 (2016), 47-60.   Google Scholar

[29]

B. JiaL. Erbe and A. Peterson, Convexity for nabla and delta fractional differences, J. Differ. Equ. Appl., 21 (2015), 360-373.  doi: 10.1080/10236198.2015.1011630.  Google Scholar

[30]

B. Jia, L. Erbe and A. Peterson, Some relations between the Caputo fractional difference operators and integer-order differences, Electron. J. Differ. Equ., (2015), 7 pp.  Google Scholar

[31]

J. M. Jonnalagadda, An ordering on Green's function and a Lyapunov-type inequality for a family of nabla fractional boundary value problems, Fract. Differ. Calc., 9 (2019), 109-124.  doi: 10.7153/fdc-2019-09-08.  Google Scholar

[32]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland, New York, 2006.  Google Scholar

[33]

C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, P. Am. Math. Soc., 145 (2017), 3809-3827.  doi: 10.1090/proc/12895.  Google Scholar

[34]

C. Lizama and M. Murillo-Arcila, Well posedness for semidiscrete fractional Cauchy problems with finite delay, J. Comput. Appl. Math., 339 (2018), 356-366.  doi: 10.1016/j.cam.2017.07.027.  Google Scholar

[35] R. Wong and R. Beals, Special Functions: A Graduate Text, Cambridge University Press, New York, 2010.  doi: 10.1017/CBO9780511762543.  Google Scholar

show all references

References:
[1]

T. Abdeljawad and B. Abdalla, Monotonicity results for delta and nabla Caputo and Riemann fractional differences via dual identities, Filomat, 31 (2017), 3671-3683.  doi: 10.2298/fil1712671a.  Google Scholar

[2]

T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., (2017), 9 pp. doi: 10.1186/s13662-017-1126-1.  Google Scholar

[3]

G. A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Model., 51 (2010), 562-571.  doi: 10.1016/j.mcm.2009.11.006.  Google Scholar

[4]

F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165-176.   Google Scholar

[5]

F. M. Atici and P. W. Eloe, Initial value problems in discrete fractional calculus, P. Am. Math. Soc., 137 (2009), 981-989.  doi: 10.1090/S0002-9939-08-09626-3.  Google Scholar

[6]

F. M. Atici and P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Differ. Equ. Appl., 17 (2011), 445-456.  doi: 10.1080/10236190903029241.  Google Scholar

[7]

F. M. Atici and M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math., 9 (2015), 139-149.  doi: 10.2298/AADM150218007A.  Google Scholar

[8] B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, 1977.   Google Scholar
[9]

R. Dahal and C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math., 102 (2014), 293-299.  doi: 10.1007/s00013-014-0620-x.  Google Scholar

[10]

R. Dahal and C. S. Goodrich, An almost sharp monotonicity result for discrete sequential fractional delta differences, J. Differ. Equ. Appl., 23 (2017), 1190-1203.  doi: 10.1080/10236198.2017.1307351.  Google Scholar

[11]

R. Dahal and C. S. Goodrich, Mixed order monotonicity results for sequential fractional nabla differences, J. Differ. Equ. Appl., 25 (2019), 837-854.  doi: 10.1080/10236198.2018.1561883.  Google Scholar

[12]

F. DuB. JiaL. Erbe and A. Peterson, Monotonicity and convexity for nabla fractional $(q, h)$-differences, J. Differ. Equ. Appl., 22 (2016), 1224-1243.  doi: 10.1080/10236198.2016.1188089.  Google Scholar

[13]

L. Erbe, C. S. Goodrich, B. Jia and A. Peterson, Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions, Adv. Differ Equ., (2016), 31 pp. doi: 10.1186/s13662-016-0760-3.  Google Scholar

[14]

R. A. C. Ferreira, A discrete fractional Gronwall inequality, P. Am. Math. Soc., 140 (2012), 1605-1612.  doi: 10.1090/S0002-9939-2012-11533-3.  Google Scholar

[15]

C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111-124.  doi: 10.1016/j.jmaa.2011.06.022.  Google Scholar

[16]

C. S. Goodrich, A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference, Math. Inequal. Appl., 19 (2016), 769-779.  doi: 10.7153/mia-19-57.  Google Scholar

[17]

C. S. Goodrich, A sharp convexity result for sequential fractional delta differences, J. Differ. Equ. Appl., 23 (2017), 1986-2003.  doi: 10.1080/10236198.2017.1380635.  Google Scholar

[18]

C. S. Goodrich, A uniformly sharp monotonicity result for discrete fractional sequential differences, Arch. Math., 110 (2018), 145-154.  doi: 10.1007/s00013-017-1106-4.  Google Scholar

[19]

C. S. Goodrich, Sharp monotonicity results for fractional nabla sequential differences, J. Differ. Equ. Appl., 25 (2019), 801-814.  doi: 10.1080/10236198.2018.1542431.  Google Scholar

[20]

C. S. Goodrich and C. Lizama, A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity, Israel J. Math., 236 (2020), 533-589.  doi: 10.1007/s11856-020-1991-2.  Google Scholar

[21]

C. S. Goodrich and C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst., 40 (2020), 4961-4983.  doi: 10.3934/dcds.2020207.  Google Scholar

[22]

C. S. Goodrich and B. Lyons, Positivity and monotonicity results for triple sequential fractional differences via convolution, Analysis (Berlin), 40 (2020), 89-103.  doi: 10.1515/anly-2019-0050.  Google Scholar

[23]

C. S. Goodrich and M. Muellner, An analysis of the sharpness of monotonicity results via homotopy for sequential fractional operators, Appl. Math. Lett., 98 (2019), 446-452.  doi: 10.1016/j.aml.2019.07.003.  Google Scholar

[24]

C. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, New York, 2015. doi: 10.1007/978-3-319-25562-0.  Google Scholar

[25]

M. Holm, Sum and difference compositions in discrete fractional calculus, Cubo, 13 (2011), 153-184.  doi: 10.4067/s0719-06462011000300009.  Google Scholar

[26]

B. JiaL. ErbeC. S. Goodrich and A. Peterson, Monotonicity results for delta fractional differences revisited, Math. Slovaca, 67 (2017), 895-906.  doi: 10.1515/ms-2017-0018.  Google Scholar

[27]

B. JiaL. Erbe and A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math., 104 (2015), 589-597.  doi: 10.1007/s00013-015-0765-2.  Google Scholar

[28]

B. JiaL. Erbe and A. Peterson, Monotonicity and convexity for nabla fractional $q$-differences, Dynam. Systems Appl., 25 (2016), 47-60.   Google Scholar

[29]

B. JiaL. Erbe and A. Peterson, Convexity for nabla and delta fractional differences, J. Differ. Equ. Appl., 21 (2015), 360-373.  doi: 10.1080/10236198.2015.1011630.  Google Scholar

[30]

B. Jia, L. Erbe and A. Peterson, Some relations between the Caputo fractional difference operators and integer-order differences, Electron. J. Differ. Equ., (2015), 7 pp.  Google Scholar

[31]

J. M. Jonnalagadda, An ordering on Green's function and a Lyapunov-type inequality for a family of nabla fractional boundary value problems, Fract. Differ. Calc., 9 (2019), 109-124.  doi: 10.7153/fdc-2019-09-08.  Google Scholar

[32]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland, New York, 2006.  Google Scholar

[33]

C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, P. Am. Math. Soc., 145 (2017), 3809-3827.  doi: 10.1090/proc/12895.  Google Scholar

[34]

C. Lizama and M. Murillo-Arcila, Well posedness for semidiscrete fractional Cauchy problems with finite delay, J. Comput. Appl. Math., 339 (2018), 356-366.  doi: 10.1016/j.cam.2017.07.027.  Google Scholar

[35] R. Wong and R. Beals, Special Functions: A Graduate Text, Cambridge University Press, New York, 2010.  doi: 10.1017/CBO9780511762543.  Google Scholar
Figure 1.  Graphical representation of the set $ \mathscr{E}_{k, 0.1} $ for $ k \le 72 $
Figure 2.  Graphical representation of the set $ \mathscr{E}_{k, 0.01} $ for $ k \le 72 $
Figure 3.  Graphical representation of the set $ \mathscr{E}_{k, 0.001} $ for $ k \le 72 $
Figure 4.  Graphical representation of the set $ \mathscr{E}_{k, 0.0001} $ for $ k \le 72 $
Figure 5.  Graphical representation of the set $ \mathscr{E}_{k, 0.00001} $ for $ k \le 72 $
Figure 6.  Heat maps for the cardinality of the set $ \{ k\ : \ (\mu, \nu ) \in \mathscr{E}_{k,\varepsilon}\} $ for $ \varepsilon = 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001 $. The cardinality increases from small (dark blue) to large (dark red) and the actual cardinalities are shown along the sidebar of each subplot
Figure 7.  Heat maps for the cardinality of the set $ \{ k\ : \ (\mu, \nu ) \in \mathscr{E}_{k,\varepsilon}\} $ for $ \varepsilon = 1/100, 1/150, 1/400, 1/650, 1/900, 1/1000 $. These correspond to the interval of $ \varepsilon $ reflected in the top two subplots of Figure 6. Notice the change of cardinality values as $ \varepsilon $ decreases
[1]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[2]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[3]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

[4]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[5]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[6]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[7]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[8]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[9]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[10]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[11]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[12]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[13]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[14]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[15]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[16]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[17]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[18]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[19]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[20]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (75)
  • HTML views (51)
  • Cited by (0)

[Back to Top]