January  2021, 20(1): 359-368. doi: 10.3934/cpaa.2020270

Isomorphism between one-dimensional and multidimensional finite difference operators

Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia

Received  July 2020 Revised  September 2020 Published  November 2020

Fund Project: This paper is a contribution to the project M3 of the Collaborative Research Centre TRR 181 "Energy Transfer in Atmosphere and Ocean" funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 274762653. This work is also supported by the RFBR (RFFI) grant No. 19-01-00094

Finite difference operators are widely used for the approximation of continuous ones. It is well known that the analysis of continuous differential operators may strongly depend on their dimensions. We will show that the finite difference operators generate the same algebra, regardless of their dimension.

Citation: Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270
References:
[1]

V. V. Bavula, The algebra of integro-differential operators on an affine line and its modules, J. Pure Appl. Algebra, 217 (2013), 495-529.  doi: 10.1016/j.jpaa.2012.06.024.  Google Scholar

[2]

K. Davidson, C*-Algebras by Example, American Mathematical Society and Fields Institute, 1997. doi: 10.1090/fim/006.  Google Scholar

[3]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Mathematical Society, Providence, Rhode Island, 2010. Google Scholar

[4]

J. G. Glimm, On a certain class of operator algebras, Trans. Am. Math. Soc., 95 (1960), 318-340.  doi: 10.2307/1993294.  Google Scholar

[5]

L. Guo and W. Keigher, On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212 (2008), 522-540.  doi: 10.1016/j.jpaa.2007.06.008.  Google Scholar

[6]

L. GuoG. Regensburger and M. Rosenkranz, On integro-differential algebras, J. Pure Appl. Algebra, 218 (2014), 456-473.  doi: 10.1016/j.jpaa.2013.06.015.  Google Scholar

[7]

R. Hoegh-Krohn and T. Skjelbred, Classification of C*-algebras admitting ergodic actions of the two-dimensional torus, J. Reine Angew. Math., 328 (1981), 1-8.  doi: 10.1515/crll.1981.328.1.  Google Scholar

[8] M. RordamF. Larsen and N. J. Laustsen, An Introduction to K-Theory for C*-Algebras, Cambridge University Press, 2000.   Google Scholar
[9]

M. Rosenkranz, A new symbolic method for solving linear two-point boundary value problems on the level of operators, J. Symb. Comput, 39 (2005), 171-199.  doi: 10.1016/j.jsc.2004.09.004.  Google Scholar

[10]

M. Tenenbaum and H. Pollard, Ordinary Differential Equations, Dover Publications Inc., 2012. Google Scholar

[11]

H. S. Yin, A simple proof of the classification of rational rotation C*-algebras, P. Am. Math. Soc., 98 (1986), 469-470.  doi: 10.2307/2046204.  Google Scholar

show all references

References:
[1]

V. V. Bavula, The algebra of integro-differential operators on an affine line and its modules, J. Pure Appl. Algebra, 217 (2013), 495-529.  doi: 10.1016/j.jpaa.2012.06.024.  Google Scholar

[2]

K. Davidson, C*-Algebras by Example, American Mathematical Society and Fields Institute, 1997. doi: 10.1090/fim/006.  Google Scholar

[3]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Mathematical Society, Providence, Rhode Island, 2010. Google Scholar

[4]

J. G. Glimm, On a certain class of operator algebras, Trans. Am. Math. Soc., 95 (1960), 318-340.  doi: 10.2307/1993294.  Google Scholar

[5]

L. Guo and W. Keigher, On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212 (2008), 522-540.  doi: 10.1016/j.jpaa.2007.06.008.  Google Scholar

[6]

L. GuoG. Regensburger and M. Rosenkranz, On integro-differential algebras, J. Pure Appl. Algebra, 218 (2014), 456-473.  doi: 10.1016/j.jpaa.2013.06.015.  Google Scholar

[7]

R. Hoegh-Krohn and T. Skjelbred, Classification of C*-algebras admitting ergodic actions of the two-dimensional torus, J. Reine Angew. Math., 328 (1981), 1-8.  doi: 10.1515/crll.1981.328.1.  Google Scholar

[8] M. RordamF. Larsen and N. J. Laustsen, An Introduction to K-Theory for C*-Algebras, Cambridge University Press, 2000.   Google Scholar
[9]

M. Rosenkranz, A new symbolic method for solving linear two-point boundary value problems on the level of operators, J. Symb. Comput, 39 (2005), 171-199.  doi: 10.1016/j.jsc.2004.09.004.  Google Scholar

[10]

M. Tenenbaum and H. Pollard, Ordinary Differential Equations, Dover Publications Inc., 2012. Google Scholar

[11]

H. S. Yin, A simple proof of the classification of rational rotation C*-algebras, P. Am. Math. Soc., 98 (1986), 469-470.  doi: 10.2307/2046204.  Google Scholar

$ {\mathcal U}_{2,1} $">Figure 1.  Two first partitions for the unitary transform $ {\mathcal U}_{2,1}^{-1} $ between $ L^2_{2,1} $ and $ L^2_{1,1} $ are shown. The characteristic functions of squares and intervals with the same "blue" and "red" numbers are transformed into each other under the action of $ {\mathcal U}_{2,1} $
Fig. 1, applied to the function $ z(x,y) = 1+\sin(\pi(x^2+y^2)) $">Figure 2.  The unitary transform $ {\mathcal U}_{2,1}^{-1} $, see Fig. 1, applied to the function $ z(x,y) = 1+\sin(\pi(x^2+y^2)) $
[1]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[2]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031

[3]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[4]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[5]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[6]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[7]

Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011

[8]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[9]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[10]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[11]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[12]

Danielle Hilhorst, Pierre Roux. A hyperbolic-elliptic-parabolic PDE model describing chemotactic E. Coli colonies. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021033

[13]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[14]

Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021046

[15]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[16]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[17]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[18]

Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1613-1637. doi: 10.3934/jimo.2020037

[19]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[20]

Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (62)
  • HTML views (53)
  • Cited by (0)

Other articles
by authors

[Back to Top]